cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069749 Number of primes less than 10^n containing only the digits 2 and 3 (A020458).

Original entry on oeis.org

2, 3, 5, 7, 11, 18, 31, 44, 83, 135, 239, 436, 818, 1436, 2773, 4695, 9244, 17022, 32948, 58158, 116040, 214188, 423902, 791950, 1554834, 2904470, 5725780, 10536383, 21070698, 40748211, 79634658, 148530950, 296094802, 561919901
Offset: 1

Views

Author

Robert G. Wilson v, Apr 22 2002

Keywords

Comments

a(22) / A006880(22) = 214188 / 201467286689315906290 =~ 10^-15. But out of the 2^22 candidates for primes, ~5% are.

Crossrefs

Programs

  • Mathematica
    s = 0; Do[k = 0; While[k < 2^n, k++; If[p = FromDigits[ PadLeft[ IntegerDigits[k, 2], n] + 2]; PrimeQ[p], s++ ]]; Print[s], {n, 1, 22}]
    With[{c=Select[Flatten[Table[FromDigits/@Tuples[{2,3},n],{n,22}]], PrimeQ]}, Table[Count[c,?(#<10^i&)],{i,22}]] (* _Harvey P. Dale, Mar 18 2016 *)
  • Python
    from sympy import isprime
    from itertools import count, islice, product
    def agen(): # generator of terms
        c = 2
        for d in count(2):
            yield c
            for first in product("23", repeat=d-1):
                t = int("".join(first) + "3")
                if isprime(t): c += 1
    print(list(islice(agen(), 20))) # Michael S. Branicky, May 23 2024

Extensions

a(23)-a(27) from Sean A. Irvine, May 17 2024
a(28)-a(34) from Michael S. Branicky, May 22 2024