A069760 Frobenius number of the numerical semigroup generated by consecutive centered square numbers.
47, 287, 959, 2399, 5039, 9407, 16127, 25919, 39599, 58079, 82367, 113567, 152879, 201599, 261119, 332927, 418607, 519839, 638399, 776159, 935087, 1117247, 1324799, 1559999, 1825199, 2122847
Offset: 1
Examples
a(1)=47 because 47 is not a nonnegative linear combination of 5 and 13, but all integers greater than 47 are.
Links
- R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Mathematica
Table[4n^4+16n^3+20n^2+8n-1,{n,30}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{47,287,959,2399,5039},30] (* Harvey P. Dale, Apr 25 2011 *)
Formula
a(n) = 4*n^4+16*n^3+20*n^2+8*n-1.
a(n) = 5*a(n-1)-10*a(n-2) +10*a(n-3)-5*a(n-4)+a(n-5). - Harvey P. Dale, Apr 25 2011
G.f.: x*(47+52*x-6*x^2+4*x^3-x^4)/(1-x)^5. - Colin Barker, Feb 14 2012
Comments