A069761 Frobenius number of the numerical semigroup generated by four consecutive tetrahedral numbers.
41, 249, 253, 853, 1243, 1571, 2619, 5059, 5357, 9437, 11801, 13609, 18327, 27607, 28919, 41951, 49169, 54473, 67253, 90573, 94051, 124099, 140347, 152027, 178989, 226141, 233369, 291089, 321839, 343639, 392631, 475999, 488993, 587633, 639653, 676181, 756779
Offset: 2
Examples
a(2) = 41 because 41 is not a nonnegative linear combination of 4, 10, 20 and 35, but all integers greater than 43 are.
Links
- Harvey P. Dale, Table of n, a(n) for n = 2..100
- R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).
Programs
-
Mathematica
FrobeniusNumber/@Partition[Binomial[Range[2,50]+2,3],4,1] (* Harvey P. Dale, Jan 22 2012 *)
Formula
Conjecture: a(n)= +a(n-1) +4*a(n-6) -4*a(n-7) -6*a(n-12) +6*a(n-13) +4*a(n-18) -4*a(n-19) -a(n-24) +a(n-25). - R. J. Mathar, Aug 15 2025
Conjectured g.f.: x^2*(-4*x^2 -600*x^3 -390*x^4 -1680*x^9 -282*x^8 -496*x^11 -804*x^10 -208*x -312*x^15 -144*x^14 -768*x^13 -772*x^12-41 -32*x^18 -40*x^17 -102*x^16 -2*x^20 -8*x^19 -1608*x^7 +x^24 -884*x^6 -328*x^5) / ( (1+x)^4 *(x^2-x+1)^4 *(1+x+x^2)^4 *(x-1)^5 ). - R. J. Mathar, Aug 15 2025
Extensions
Sequence terms corrected and extended by Harvey P. Dale, Jan 22 2012
Offset corrected and example corrected by Harvey P. Dale, Jan 24 2012
Comments