cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069761 Frobenius number of the numerical semigroup generated by four consecutive tetrahedral numbers.

Original entry on oeis.org

41, 249, 253, 853, 1243, 1571, 2619, 5059, 5357, 9437, 11801, 13609, 18327, 27607, 28919, 41951, 49169, 54473, 67253, 90573, 94051, 124099, 140347, 152027, 178989, 226141, 233369, 291089, 321839, 343639, 392631, 475999, 488993, 587633, 639653, 676181, 756779
Offset: 2

Views

Author

Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 09 2002

Keywords

Comments

The Frobenius number of a numerical semigroup generated by relatively prime integers a_1,...,a_n is the largest positive integer that is not a nonnegative linear combination of a_1,...,a_n. Since four consecutive tetrahedral numbers are relatively prime, they generate a numerical semigroup with a Frobenius number.

Examples

			a(2) = 41 because 41 is not a nonnegative linear combination of 4, 10, 20 and 35, but all integers greater than 43 are.
		

Crossrefs

Programs

  • Mathematica
    FrobeniusNumber/@Partition[Binomial[Range[2,50]+2,3],4,1] (* Harvey P. Dale, Jan 22 2012 *)

Formula

Conjecture: a(n)= +a(n-1) +4*a(n-6) -4*a(n-7) -6*a(n-12) +6*a(n-13) +4*a(n-18) -4*a(n-19) -a(n-24) +a(n-25). - R. J. Mathar, Aug 15 2025
Conjectured g.f.: x^2*(-4*x^2 -600*x^3 -390*x^4 -1680*x^9 -282*x^8 -496*x^11 -804*x^10 -208*x -312*x^15 -144*x^14 -768*x^13 -772*x^12-41 -32*x^18 -40*x^17 -102*x^16 -2*x^20 -8*x^19 -1608*x^7 +x^24 -884*x^6 -328*x^5) / ( (1+x)^4 *(x^2-x+1)^4 *(1+x+x^2)^4 *(x-1)^5 ). - R. J. Mathar, Aug 15 2025

Extensions

Sequence terms corrected and extended by Harvey P. Dale, Jan 22 2012
Offset corrected and example corrected by Harvey P. Dale, Jan 24 2012