A069764 Frobenius number of the numerical semigroup generated by consecutive octahedral numbers.
89, 773, 3611, 12179, 33349, 78889, 167383, 326471, 595409, 1027949, 1695539, 2690843, 4131581, 6164689, 8970799, 12769039, 17822153, 24441941, 32995019, 43908899, 57678389, 74872313, 96140551, 122221399, 153949249, 192262589, 238212323, 292970411, 357838829
Offset: 2
Examples
a(2)=89 because 89 is not a nonnegative linear combination of 6 and 19 (the second and third octahedral numbers), but all integers greater than 89 are.
Links
- Harvey P. Dale, Table of n, a(n) for n = 2..1000
- R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Mathematica
FrobeniusNumber/@Partition[Rest[Table[(n(2n^2+1))/3,{n,30}]],2,1] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{89,773,3611,12179,33349,78889,167383},30] (* Harvey P. Dale, Nov 19 2015 *)
Formula
a(n) = ((1/3)*n*(2*n^2+1)-1)*((1/3)*(n+1)*(2*(n+1)^2+1)-1)-1.
G.f.: x^2*(89+150*x+69*x^2+20*x^3-13*x^4+6*x^5-x^6)/(1-x)^7. - Colin Barker, Feb 12 2012
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+ 21*a(n-5)- 7*a(n-6)+a(n-7). - Harvey P. Dale, Nov 19 2015
Extensions
More terms from Carl Najafi, Sep 10 2011
Comments