A069819 Numbers k such that 1/(Sum_{p|k} (1/p) - 1), where p are the prime divisors of k, is a positive integer.
30, 60, 90, 120, 150, 180, 240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810, 858, 900, 960, 1080, 1200, 1350, 1440, 1500, 1620, 1716, 1722, 1800, 1920, 2160, 2250, 2400, 2430, 2574, 2700, 2880, 3000, 3240, 3432, 3444, 3600, 3750, 3840, 4050, 4320, 4500
Offset: 1
Examples
For k = 30 = 2*3*5, 1/(Sum_{p|n} (1/p) - 1) = 1/(1/2 + 1/3 + 1/5 - 1) = 30 hence 30 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..4233 (terms below 10^10)
- Diophante, A1862 - Inversons les facteurs (in French).
Programs
-
Mathematica
Select[Range[4320], (sum = Plus @@ (1/FactorInteger[#][[;;,1]])) > 1 && IntegerQ[1/(sum - 1)] &] (* Amiram Eldar, Feb 03 2020 *)
-
PARI
isok(k) = my(f=factor(k), x=1/(sum(i=1, #f~, 1/f[i,1]) -1)); (x>1) && (denominator(x)==1); \\ Michel Marcus, Dec 19 2021
-
Python
from sympy import factorint from fractions import Fraction def ok(n): s = sum(Fraction(1, p) for p in factorint(n)) return s > 1 and (s - 1).numerator == 1 print([k for k in range(1, 4501) if ok(k)]) # Michael S. Branicky, Dec 19 2021
Comments