A069830 Multiplicative inverse of prime(n) modulo prime(n+1).
2, 2, 3, 8, 6, 4, 9, 17, 24, 15, 6, 10, 21, 35, 44, 49, 30, 11, 53, 36, 13, 62, 74, 12, 25, 51, 80, 54, 28, 9, 98, 114, 69, 134, 75, 26, 27, 125, 144, 149, 90, 19, 96, 49, 99, 123, 130, 170, 114, 58, 199, 120, 25, 214, 219, 224, 135, 46, 70, 141, 205, 285, 233, 156, 79
Offset: 1
Keywords
Examples
a(4) = 8 as prime(5) = 11 divides 8*7 -1, where 7 = prime(4). a(9) = 24, for a(9)*prime(9) = 24*23 = (-5)*(-6) [mod 29] = 1 [mod prime(10)]. a(14) = 35, for a(14)*prime(14) = 35*43 = (-12)*(-4) [mod 47] = 1 [mod prime(15)].
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A077005.
Programs
-
Magma
[InverseMod(NthPrime(n), NthPrime(n+1)): n in [1..65]]; // G. C. Greubel, Aug 09 2019
-
Maple
seq( (1/ithprime(n) mod ithprime(n+1)), n = 1..65); # G. C. Greubel, Aug 09 2019
-
Mathematica
Table[PowerMod[Prime[n], -1, Prime[n+1]], {n, 65}] (* G. C. Greubel, Aug 09 2019 *)
-
PARI
vector(65,n,lift(Mod(prime(n),prime(n+1))^-1)) \\ Joerg Arndt, Aug 09 2019
-
Sage
[nth_prime(n).inverse_mod(nth_prime(n+1)) for n in (1..65)] # G. C. Greubel, Aug 09 2019
Formula
a(n) + A077005(n) = prime(n+1). - Emmanuel Vantieghem, Aug 12 2018
Extensions
More terms from Rick L. Shepherd, May 03 2002
Comments