cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069830 Multiplicative inverse of prime(n) modulo prime(n+1).

Original entry on oeis.org

2, 2, 3, 8, 6, 4, 9, 17, 24, 15, 6, 10, 21, 35, 44, 49, 30, 11, 53, 36, 13, 62, 74, 12, 25, 51, 80, 54, 28, 9, 98, 114, 69, 134, 75, 26, 27, 125, 144, 149, 90, 19, 96, 49, 99, 123, 130, 170, 114, 58, 199, 120, 25, 214, 219, 224, 135, 46, 70, 141, 205, 285, 233, 156, 79
Offset: 1

Views

Author

Lekraj Beedassy, Apr 23 2002

Keywords

Comments

Smallest k such that prime(n+1) divides k*prime(n) - 1, n>1.

Examples

			a(4) = 8 as prime(5) = 11 divides 8*7 -1, where 7 = prime(4).
a(9) = 24, for a(9)*prime(9) = 24*23 = (-5)*(-6) [mod 29] = 1 [mod prime(10)].
a(14) = 35, for a(14)*prime(14) = 35*43 = (-12)*(-4) [mod 47] = 1 [mod prime(15)].
		

Crossrefs

Cf. A077005.

Programs

  • Magma
    [InverseMod(NthPrime(n), NthPrime(n+1)): n in [1..65]]; // G. C. Greubel, Aug 09 2019
    
  • Maple
    seq( (1/ithprime(n) mod ithprime(n+1)), n = 1..65); # G. C. Greubel, Aug 09 2019
  • Mathematica
    Table[PowerMod[Prime[n], -1, Prime[n+1]], {n, 65}] (* G. C. Greubel, Aug 09 2019 *)
  • PARI
    vector(65,n,lift(Mod(prime(n),prime(n+1))^-1)) \\ Joerg Arndt, Aug 09 2019
    
  • Sage
    [nth_prime(n).inverse_mod(nth_prime(n+1)) for n in (1..65)] # G. C. Greubel, Aug 09 2019

Formula

a(n) + A077005(n) = prime(n+1). - Emmanuel Vantieghem, Aug 12 2018

Extensions

More terms from Rick L. Shepherd, May 03 2002