cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069911 Expansion of Product_{i in A069909} 1/(1 - x^i).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 12, 14, 17, 20, 25, 29, 35, 41, 49, 57, 68, 78, 93, 107, 125, 144, 168, 192, 223, 255, 294, 335, 385, 437, 501, 568, 647, 732, 833, 939, 1065, 1199, 1355, 1523, 1717, 1925, 2166, 2425, 2720, 3040, 3405, 3797, 4244, 4727, 5272
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2002

Keywords

Comments

Arises from an identity of Slater's.
Number of partitions of 2*n+1 into distinct odd parts. - Vladeta Jovovic, May 08 2003
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also number of partitions of 2n+1 such that if k is the largest part, then k occurs an odd number of times and each integer from 1 to k-1 occurs a positive even number of times. Example: a(4)=2 because we have [3,2,2,1,1] and [1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Apr 16 2006
Difference between number of partitions of 2n+1 with an odd number of parts and those with an even number of parts (this is a consequence of Jovovic's comment above). - George Beck, May 22 2016
Let b(k) be the convolution inverse of A035457, k=1, 2, 3, ...; then a(n) = -b(4n+3), n = 0, 1, 2, 3, ... (conjectured). - George Beck, Aug 19 2017

Examples

			G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 6*x^9 + ...
G.f. = q^23 + q^71 + q^119 + q^167 + 2*q^215 + 2*q^263 + 3*q^311 + 4*q^359 + ...
		

Crossrefs

Programs

  • Maple
    h:=product(1+x^(2*i-1),i=1..60): hser:=series(h,x=0,120): seq(coeff(hser,x^(2*n+1)),n=0..56); # Emeric Deutsch, Apr 16 2006
  • Mathematica
    H[x_] := x*QPochhammer[-1/x, x^2]/(1 + x); s = (H[Sqrt[x]] - H[-Sqrt[x]]) / (2*Sqrt[x]) + O[x]^60; CoefficientList[s, x] (* Jean-François Alcover, Nov 14 2015, after Emeric Deutsch *)
  • PARI
    {a(n) = my(A); if( n<0, 0, n=2*n+1; A = x * O(x^n); -polcoeff( eta(x + A) / eta(x^2 + A), n))}; /* Michael Somos, Jul 18 2006 */

Formula

a(n) = A000700(2n+1) = -A081362(2n+1).
Euler transform of period 16 sequence [ 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, ...]. - Michael Somos, Apr 11 2004
G.f.: ( H(sqrt(x)) - H(-sqrt(x)) ) / (2*sqrt(x)), where H(x)=prod(i>=1, 1+x^(2*i-1) ). - Emeric Deutsch, Apr 16 2006
a(n) ~ exp(Pi*sqrt(n/3)) / (2^(5/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Nov 14 2015
Expansion of f(x, x^7) / f(-x^2) where f(, ) is Ramanujan's general theta function. - Michael Somos, Jun 04 2016