cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069941 Number of primes p such that n! <= p <= n! + n^2.

Original entry on oeis.org

1, 3, 3, 3, 4, 5, 5, 4, 7, 7, 9, 6, 5, 8, 4, 9, 10, 14, 8, 16, 14, 14, 7, 6, 16, 12, 12, 15, 13, 12, 9, 12, 12, 17, 13, 6, 12, 18, 15, 13, 15, 17, 15, 23, 19, 12, 13, 19, 18, 22, 20, 19, 16, 17, 19, 19, 23, 20, 18, 19, 23, 24, 19, 15, 19, 20, 26, 18, 24, 22, 24, 25, 24, 16, 23
Offset: 1

Views

Author

Benoit Cloitre, May 04 2002

Keywords

Comments

Conjecture: if n>=2 there are at least 3 primes p such that n!<=p<=n!+n^2 (or stronger: for n>1, a(n) > log(n)). This is stronger than the conjecture described in A037151(n). Because if n!+k is prime, k composite, k=A*B, where A and B must have, each one, at least one prime factor>n (if not: A=q*A' q<=n then n!+k is divisible by q), hence k>n^2. Also stronger (but more restrictive) than the Schinzel conjecture: "for m large enough there's at least one prime p such that m <= p <= m + log(m)^2" since n^2 < log(n!)^2 for n>5.
For the n-th term we have a(n) = pi(n!+n^2) - pi(n!), where pi(x) is the prime counting function. However, pi(n!) is difficult to compute for n>25. The Prime Number Theorem states that pi(x) and Li(x), the logarithmic integral, are asymptotically equal. Hence we can approximate a(n) by Li(n!+n^2) - Li(n!). These approximate values of a(n) are plotted as the red curve in the "Theoretical versus Actual" plot. By the way, using x/log(x) as approximation for Li(x) would change the curve by at most 1 unit. - T. D. Noe, Mar 06 2010

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Range[n!,n!+n^2], PrimeQ]], {n,100}] (* T. D. Noe, Mar 06 2010 *)
  • PARI
    for(n=1,75,print1(sum(k=n!,n!+n^2,isprime(k)),","))