A069944 a(n) = denominator(b(n)), where b(1) = b(2) = 1, b(n) = (b(n-1) + b(n-2))/(n-1).
1, 1, 1, 3, 12, 60, 180, 630, 10080, 18144, 453600, 2494800, 59875200, 778377600, 1089728640, 40864824000, 1307674368000, 22230464256000, 15390321408000, 380140938777600, 76028187755520000, 1596591942865920000
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..350
Programs
-
Magma
A013989:= func< n | (&+[Factorial(n)/(2^k*Factorial(n-2*k)*Factorial(k)): k in [0..Floor(n/2)]]) >; A069944:= func< n | Denominator(A013989(n-1)/Factorial(n-1)) >; [A069944(n): n in [1..30]]; // G. C. Greubel, Aug 17 2022
-
Mathematica
Table[Denominator[n*(-I/Sqrt[2])^(n-1)*HermiteH[n-1, I/Sqrt[2]]/n!], {n, 30}] (* G. C. Greubel, Aug 17 2022 *)
-
SageMath
@CachedFunction def A013989(n): return n+1 if (n<2) else (n+1)*(A013989(n-1) + n*A013989(n-2))/n [denominator(A013989(n-1)/factorial(n)) for n in (1..30)] # G. C. Greubel, Aug 17 2022
Formula
a(n) = denominator( A013989(n-1)/n! ). - G. C. Greubel, Aug 17 2022
Comments