cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069950 Expansion of (1+x^2)*(1+x^5)*(1+x^8)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^8)*(1-x^9)*(1-x^10)).

Original entry on oeis.org

1, 1, 3, 4, 7, 11, 17, 25, 38, 53, 77, 105, 146, 196, 265, 350, 462, 600, 778, 994, 1270, 1601, 2016, 2514, 3126, 3857, 4745, 5797, 7063, 8554, 10331, 12411, 14871, 17734, 21093, 24986, 29519, 34747, 40801, 47746, 55746, 64884, 75353
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2002

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^2)*(1+x^5)*(1+x^8)/( (&*[1-x^j: j in [1..10]]) ) )); // G. C. Greubel, Aug 16 2022
    
  • Mathematica
    CoefficientList[Series[(1+x^2)*(1+x^5)*(1+x^8)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/ (1-x^5)/(1-x^6)/(1-x^7)/(1-x^8)/(1-x^9)/(1-x^10),{x,0,60}],x] (* Harvey P. Dale, Feb 25 2013 *)
  • PARI
    Vec((1+x^2)*(1+x^5)*(1+x^8)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/(1-x^5)/(1-x^6)/(1-x^7)/(1-x^8)/(1-x^9)/(1-x^10)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
    
  • Sage
    def A069950_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^2)*(1+x^5)*(1+x^8)/product(1-x^j for j in (1..10)) ).list()
    A069950_list(60) # G. C. Greubel, Aug 16 2022

Formula

G.f.: (1+x^2)*(1+x^5)*(1+x^8)/( Product_{j=1..10} (1-x^j) ). - G. C. Greubel, Aug 16 2022