cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069996 Number of spanning trees on the bipartite graph K_{3,n}.

Original entry on oeis.org

0, 1, 12, 81, 432, 2025, 8748, 35721, 139968, 531441, 1968300, 7144929, 25509168, 89813529, 312487308, 1076168025, 3673320192, 12440502369, 41841412812, 139858796529, 464904586800, 1537671920841, 5062810950252, 16600580533161, 54226471004352, 176518460300625
Offset: 0

Views

Author

Eric Weinhandl (eweinhandl(AT)msn.com), May 01 2002

Keywords

Comments

This is the second binomial transform of the octagonal numbers A000567 and the binomial transform of A084857. - Paul Barry, Jun 09 2003

Crossrefs

Programs

  • Mathematica
    a[n_] := n^2*3^(n - 1); Table[ a[n], {n, 1, 24}]

Formula

a(n) = n^2 * 3^(n-1).
E.g.f.: exp(3*x)*(x+3*x^2). - Paul Barry, Jul 23 2003
From Colin Barker, Aug 10 2012: (Start)
a(n) = 9*a(n-1)-27*a(n-2)+27*a(n-3).
G.f.: x*(1+3*x)/(1-3*x)^3. (End)
G.f.: 1 + 12*x/(G(0) - 12*x), where G(k) = 1 + 12*x + 2*k*(6*x+1) + (1+3*x)*k^2 - 3*x*(k+1)^2*(k+3)^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 05 2013

Extensions

Edited and extended by Robert G. Wilson v, May 04 2002
a(0)=0 prepended by Alois P. Heinz, Jan 03 2025