Original entry on oeis.org
1, 13, 94, 526, 2551, 11299, 47020, 186988, 718429, 2686729, 9831658, 35340826, 125154355, 437641663, 1513809688, 5187129880, 17627632249, 59469045061, 199327841590, 664232428390, 2201904349231, 7264715299483, 23865295832644, 78091766836996
Offset: 1
- "Supplemento al Periodico di Matematica", Raffaello Giusti Editore (Livorno) - Apr / May, 1913 - p. 99 (Problem 1277, case x=3).
-
[(3^n*(n^2-n+1)-1)/2: n in [1..25]]; // Vincenzo Librandi, Aug 19 2013
-
CoefficientList[Series[(1 + 3 x) / ((1 - x) (1 - 3 x)^3), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 19 2013 *)
-
a(n) = (3^n*(n^2-n+1)-1)/2 \\ Michel Marcus, Jun 07 2013
A072590
Table T(n,k) giving number of spanning trees in complete bipartite graph K(n,k), read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 32, 81, 32, 1, 1, 80, 432, 432, 80, 1, 1, 192, 2025, 4096, 2025, 192, 1, 1, 448, 8748, 32000, 32000, 8748, 448, 1, 1, 1024, 35721, 221184, 390625, 221184, 35721, 1024, 1, 1, 2304, 139968, 1404928, 4050000, 4050000
Offset: 1
From _Andrew Howroyd_, Oct 29 2019: (Start)
Array begins:
============================================================
n\k | 1 2 3 4 5 6 7
----+-------------------------------------------------------
1 | 1 1 1 1 1 1 1 ...
2 | 1 4 12 32 80 192 448 ...
3 | 1 12 81 432 2025 8748 35721 ...
4 | 1 32 432 4096 32000 221184 1404928 ...
5 | 1 80 2025 32000 390625 4050000 37515625 ...
6 | 1 192 8748 221184 4050000 60466176 784147392 ...
7 | 1 448 35721 1404928 37515625 784147392 13841287201 ...
...
(End)
- J. W. Moon, Counting Labeled Trees, Issue 1 of Canadian mathematical monographs, Canadian Mathematical Congress, 1970.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Exercise 5.66.
- T. D. Noe, Antidiagonals d=1..50, flattened
- Taylor Brysiewicz and Aida Maraj, Lawrence Lifts, Matroids, and Maximum Likelihood Degrees, arXiv:2310.13064 [math.CO], 2023. See p. 13.
- H. I. Scoins, The number of trees with nodes of alternate parity, Proc. Cambridge Philos. Soc. 58 (1962) 12-16.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Eric Weisstein's World of Mathematics, Spanning Tree
-
t[n_, k_] := n^(k-1) * k^(n-1); Table[ t[n-k+1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 21 2013 *)
-
{T(n, k) = if( n<1 || k<1, 0, n^(k-1) * k^(n-1))}
A068087
a(n) = n^(2*n-2).
Original entry on oeis.org
1, 4, 81, 4096, 390625, 60466176, 13841287201, 4398046511104, 1853020188851841, 1000000000000000000, 672749994932560009201, 552061438912436417593344, 542800770374370512771595361, 629983141281877223603213172736, 852226929923929274082183837890625
Offset: 1
Sharon Sela (sharonsela(AT)hotmail.com), May 06 2002
A084857
Inverse binomial transform of n^2*3^(n-1).
Original entry on oeis.org
0, 1, 10, 48, 176, 560, 1632, 4480, 11776, 29952, 74240, 180224, 430080, 1011712, 2351104, 5406720, 12320768, 27852800, 62521344, 139460608, 309329920, 682622976, 1499463680, 3279945728, 7147094016, 15518924800, 33587986432, 72477573120, 155960999936
Offset: 0
-
LinearRecurrence[{6,-12,8},{0,1,10},30] (* Harvey P. Dale, Dec 28 2019 *)
A127960
a(n) = n^2*3^n.
Original entry on oeis.org
0, 3, 36, 243, 1296, 6075, 26244, 107163, 419904, 1594323, 5904900, 21434787, 76527504, 269440587, 937461924, 3228504075, 11019960576, 37321507107, 125524238436, 419576389587, 1394713760400, 4613015762523, 15188432850756
Offset: 0
-
[n^2*3^n: n in [0..30]]; // Vincenzo Librandi, Feb 07 2013
-
LinearRecurrence[{9,-27,27}, {0,3,36}, 25] (* or *) CoefficientList[ Series[3*x(1 + 3*x)/(1 - 3*x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 07 2013 *)
-
for(n=0,30, print1(n^2*3^n, ", ")) \\ G. C. Greubel, May 04 2018
A278417
a(n) = n*((2+sqrt(3))^n + (2-sqrt(3))^n)/2.
Original entry on oeis.org
0, 2, 14, 78, 388, 1810, 8106, 35294, 150536, 632034, 2620870, 10759342, 43804812, 177105266, 711809378, 2846259390, 11330543632, 44929049794, 177540878718, 699402223118, 2747583822740, 10766828545746, 42095796462874, 164244726238366, 639620518118424, 2486558615814050, 9651161613824822, 37403957244654702
Offset: 0
-
f:=n->expand(n*((2+sqrt(3))^n + (2-sqrt(3))^n)/2); # N. J. A. Sloane, May 13 2017
-
Table[Simplify[(n/2) (((2 + #)^n + (2 - #)^n)) &@ Sqrt@ 3], {n, 3, 27}] (* or *)
Drop[#, 3] &@ CoefficientList[Series[2 x^3*(39 - 118 x + 55 x^2 - 7 x^3)/(1 - 4 x + x^2)^2, {x, 0, 27}], x] (* Michael De Vlieger, Nov 24 2016 *)
LinearRecurrence[{8,-18,8,-1},{0,2,14,78},30] (* Harvey P. Dale, Jan 01 2021 *)
-
vector(25, n, n+=2; n*((2+sqrt(3))^n + ((2-sqrt(3))^n))/2) \\ Colin Barker, Nov 21 2016
-
Vec(2*x^3*(39 - 118*x + 55*x^2 - 7*x^3) / (1 - 4*x + x^2)^2 + O(x^30)) \\ Colin Barker, Nov 21 2016
-
def a278417(n):
a = [0, 2, 14, 78, 388, 1810]
if n < 6:
return a[n]
for k in range(n - 5):
a = a[1:] + [7*a[-1] - 10*a[-2] - 10*a[-3] + 7*a[-4] - a[-5]]
return a[-1]
# David Radcliffe, May 09 2025
A334062
Triangle read by rows: T(n,k) is the number of non-crossing set partitions of {1..4n} into n sets of 4 with k of the sets being a contiguous set of elements.
Original entry on oeis.org
1, 3, 1, 9, 12, 1, 27, 81, 31, 1, 81, 432, 390, 65, 1, 243, 2025, 3330, 1365, 120, 1, 729, 8748, 22815, 17415, 3909, 203, 1, 2187, 35721, 135513, 166320, 70938, 9730, 322, 1, 6561, 139968, 728028, 1312038, 911358, 242004, 21816, 486, 1, 19683, 531441, 3630420, 9032310, 9294264, 4067658, 722316, 45090, 705, 1
Offset: 1
Triangle starts:
1;
3, 1;
9, 12, 1;
27, 81, 31, 1;
81, 432, 390, 65, 1;
243, 2025, 3330, 1365, 120, 1;
...
For n=2 and k=1 the configurations are (1,6,7,8),(2,3,4,5), (1,2,7,8),(3,4,5,6), and (1,2,3,8),(4,5,6,7); hence T(2,1) = 3.
Showing 1-7 of 7 results.
Comments