cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A153703 Partial sums of A069996.

Original entry on oeis.org

1, 13, 94, 526, 2551, 11299, 47020, 186988, 718429, 2686729, 9831658, 35340826, 125154355, 437641663, 1513809688, 5187129880, 17627632249, 59469045061, 199327841590, 664232428390, 2201904349231, 7264715299483, 23865295832644, 78091766836996
Offset: 1

Views

Author

Bruno Berselli, Dec 12 2010

Keywords

Comments

The first differences are in the third row of the square array of A072590.
The general formula for the partial sums of the sequence 1, 4*m, 9*m^2, 16*m^3, 25*m^4,...,n^2*m^(n-1),... is (n^2*m^(n+2)-(2*n*(n+1)-1)*m^(n+1)+(n+1)^2*m^n-m-1)/(m-1)^3 with m>1 (see also References).

References

  • "Supplemento al Periodico di Matematica", Raffaello Giusti Editore (Livorno) - Apr / May, 1913 - p. 99 (Problem 1277, case x=3).

Crossrefs

Programs

  • Magma
    [(3^n*(n^2-n+1)-1)/2: n in [1..25]]; // Vincenzo Librandi, Aug 19 2013
  • Mathematica
    CoefficientList[Series[(1 + 3 x) / ((1 - x) (1 - 3 x)^3), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 19 2013 *)
  • PARI
    a(n) = (3^n*(n^2-n+1)-1)/2 \\ Michel Marcus, Jun 07 2013
    

Formula

a(n) = (3^n*(n^2 - n + 1) - 1)/2.
G.f.: x*(1+3*x)/((1-x)*(1-3*x)^3).
a(n) = 10*a(n-1) - 36*a(n-2) + 54*a(n-3) - 27a(n-4) for n>4.
a(n) = 9*A027472(n+1) + A003462(n) for n>2.
E.g.f.: (1/2)*((1 + 9*x^2)*exp(x) - exp(-x))*exp(2*x). - G. C. Greubel, Aug 24 2016

A072590 Table T(n,k) giving number of spanning trees in complete bipartite graph K(n,k), read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 32, 81, 32, 1, 1, 80, 432, 432, 80, 1, 1, 192, 2025, 4096, 2025, 192, 1, 1, 448, 8748, 32000, 32000, 8748, 448, 1, 1, 1024, 35721, 221184, 390625, 221184, 35721, 1024, 1, 1, 2304, 139968, 1404928, 4050000, 4050000
Offset: 1

Views

Author

Michael Somos, Jun 23 2002

Keywords

Examples

			From _Andrew Howroyd_, Oct 29 2019: (Start)
Array begins:
============================================================
n\k | 1   2     3       4        5         6           7
----+-------------------------------------------------------
  1 | 1   1     1       1        1         1           1 ...
  2 | 1   4    12      32       80       192         448 ...
  3 | 1  12    81     432     2025      8748       35721 ...
  4 | 1  32   432    4096    32000    221184     1404928 ...
  5 | 1  80  2025   32000   390625   4050000    37515625 ...
  6 | 1 192  8748  221184  4050000  60466176   784147392 ...
  7 | 1 448 35721 1404928 37515625 784147392 13841287201 ...
  ...
(End)
		

References

  • J. W. Moon, Counting Labeled Trees, Issue 1 of Canadian mathematical monographs, Canadian Mathematical Congress, 1970.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Exercise 5.66.

Crossrefs

Columns 2..3 are A001787, A069996.
Main diagonal is A068087.
Antidiagonal sums are A132609.

Programs

  • Mathematica
    t[n_, k_] := n^(k-1) * k^(n-1); Table[ t[n-k+1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 21 2013 *)
  • PARI
    {T(n, k) = if( n<1 || k<1, 0, n^(k-1) * k^(n-1))}

Formula

T(n, k) = n^(k-1) * k^(n-1).
E.g.f.: A(x,y) - 1, where: A(x,y) = exp( x*exp( y*A(x,y) ) ) = Sum_{n>=0} Sum_{k=0..n} (n-k)^k * (k+1)^(n-k-1) * x^(n-k)/(n-k)! * y^k/k!. - Paul D. Hanna, Jan 22 2019

Extensions

Scoins reference from Philippe Deléham, Dec 22 2003

A068087 a(n) = n^(2*n-2).

Original entry on oeis.org

1, 4, 81, 4096, 390625, 60466176, 13841287201, 4398046511104, 1853020188851841, 1000000000000000000, 672749994932560009201, 552061438912436417593344, 542800770374370512771595361, 629983141281877223603213172736, 852226929923929274082183837890625
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 06 2002

Keywords

Comments

Number of spanning trees in the bipartite graph K(n,n). In general the number of spanning trees in the bipartite graph K(m,n) is m^(n-1) * n^(m-1).

Crossrefs

a(n) = A000169(n)^2.

Programs

A084857 Inverse binomial transform of n^2*3^(n-1).

Original entry on oeis.org

0, 1, 10, 48, 176, 560, 1632, 4480, 11776, 29952, 74240, 180224, 430080, 1011712, 2351104, 5406720, 12320768, 27852800, 62521344, 139460608, 309329920, 682622976, 1499463680, 3279945728, 7147094016, 15518924800, 33587986432, 72477573120, 155960999936
Offset: 0

Views

Author

Paul Barry, Jun 09 2003

Keywords

Comments

Binomial transform of octagonal numbers A000567. Inverse binomial transform of A069996.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6,-12,8},{0,1,10},30] (* Harvey P. Dale, Dec 28 2019 *)

Formula

a(n) = n*(3*n - 1)*2^(n - 2).
O.g.f.: -x*(1+4*x)/(-1+2*x)^3. - R. J. Mathar, Apr 02 2008

A127960 a(n) = n^2*3^n.

Original entry on oeis.org

0, 3, 36, 243, 1296, 6075, 26244, 107163, 419904, 1594323, 5904900, 21434787, 76527504, 269440587, 937461924, 3228504075, 11019960576, 37321507107, 125524238436, 419576389587, 1394713760400, 4613015762523, 15188432850756
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 07 2007

Keywords

Crossrefs

Programs

  • Magma
    [n^2*3^n: n in [0..30]]; // Vincenzo Librandi, Feb 07 2013
    
  • Mathematica
    LinearRecurrence[{9,-27,27}, {0,3,36}, 25] (* or *) CoefficientList[ Series[3*x(1 + 3*x)/(1 - 3*x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 07 2013 *)
  • PARI
    for(n=0,30, print1(n^2*3^n, ", ")) \\ G. C. Greubel, May 04 2018

Formula

G.f.: 3*x*(1 + 3*x)/(1 - 3*x)^3. - Vincenzo Librandi, Feb 07 2013
a(n) = 9*a(n-1) - 27*a(n-2) + 27*a(n-3). - Vincenzo Librandi, Feb 07 2013
a(n) = 3*A069996(n) for n>0. - Bruno Berselli, Feb 07 2013
E.g.f.: (9*x^2 + 3*x)*exp(3*x). - G. C. Greubel, May 04 2018

A278417 a(n) = n*((2+sqrt(3))^n + (2-sqrt(3))^n)/2.

Original entry on oeis.org

0, 2, 14, 78, 388, 1810, 8106, 35294, 150536, 632034, 2620870, 10759342, 43804812, 177105266, 711809378, 2846259390, 11330543632, 44929049794, 177540878718, 699402223118, 2747583822740, 10766828545746, 42095796462874, 164244726238366, 639620518118424, 2486558615814050, 9651161613824822, 37403957244654702
Offset: 0

Views

Author

Indranil Ghosh, Nov 21 2016

Keywords

Comments

This was originally based on a graph theory formula in the Wikipedia which turned out to be wrong.

Crossrefs

Programs

  • Maple
    f:=n->expand(n*((2+sqrt(3))^n + (2-sqrt(3))^n)/2); # N. J. A. Sloane, May 13 2017
  • Mathematica
    Table[Simplify[(n/2) (((2 + #)^n + (2 - #)^n)) &@ Sqrt@ 3], {n, 3, 27}] (* or *)
    Drop[#, 3] &@ CoefficientList[Series[2 x^3*(39 - 118 x + 55 x^2 - 7 x^3)/(1 - 4 x + x^2)^2, {x, 0, 27}], x] (* Michael De Vlieger, Nov 24 2016 *)
    LinearRecurrence[{8,-18,8,-1},{0,2,14,78},30] (* Harvey P. Dale, Jan 01 2021 *)
  • PARI
    vector(25, n, n+=2; n*((2+sqrt(3))^n + ((2-sqrt(3))^n))/2) \\ Colin Barker, Nov 21 2016
    
  • PARI
    Vec(2*x^3*(39 - 118*x + 55*x^2 - 7*x^3) / (1 - 4*x + x^2)^2 + O(x^30)) \\ Colin Barker, Nov 21 2016
  • Python
    def a278417(n):
        a = [0, 2, 14, 78, 388, 1810]
        if n < 6:
            return a[n]
        for k in range(n - 5):
            a = a[1:] + [7*a[-1] - 10*a[-2] - 10*a[-3] + 7*a[-4] - a[-5]]
        return a[-1]
    # David Radcliffe, May 09 2025
    

Formula

From Colin Barker, Nov 21 2016: (Start)
a(n) = 7*a(n-1) - 10*a(n-2) - 10*a(n-3) + 7*a(n-4) - a(n-5) for n>6.
G.f.: 2*x^3*(39 - 118*x + 55*x^2 - 7*x^3) / (1 - 4*x + x^2)^2.
(End)

Extensions

Entry revised by N. J. A. Sloane, May 13 2017

A334062 Triangle read by rows: T(n,k) is the number of non-crossing set partitions of {1..4n} into n sets of 4 with k of the sets being a contiguous set of elements.

Original entry on oeis.org

1, 3, 1, 9, 12, 1, 27, 81, 31, 1, 81, 432, 390, 65, 1, 243, 2025, 3330, 1365, 120, 1, 729, 8748, 22815, 17415, 3909, 203, 1, 2187, 35721, 135513, 166320, 70938, 9730, 322, 1, 6561, 139968, 728028, 1312038, 911358, 242004, 21816, 486, 1, 19683, 531441, 3630420, 9032310, 9294264, 4067658, 722316, 45090, 705, 1
Offset: 1

Views

Author

Donovan Young, May 28 2020

Keywords

Comments

T(n,k) is also the number of non-crossing configurations with exactly k polyomino matchings in a generalized game of memory played on the path of length 4n, see [Young].
For the case of partitions of {1..3n} into sets of 3, see A091320.
For the case of partitions of {1..2n} into sets of 2, see A001263.

Examples

			Triangle starts:
    1;
    3,    1;
    9,   12,    1;
   27,   81,   31,    1;
   81,  432,  390,   65,   1;
  243, 2025, 3330, 1365, 120, 1;
  ...
For n=2 and k=1 the configurations are (1,6,7,8),(2,3,4,5), (1,2,7,8),(3,4,5,6), and (1,2,3,8),(4,5,6,7); hence T(2,1) = 3.
		

Crossrefs

Row sums are A002293.
Column 2 is A069996.

Formula

G.f.: G(t, z) satisfies z*G^4 - (1 + z - t*z)*G + 1 = 0.
Showing 1-7 of 7 results.