cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A072590 Table T(n,k) giving number of spanning trees in complete bipartite graph K(n,k), read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 32, 81, 32, 1, 1, 80, 432, 432, 80, 1, 1, 192, 2025, 4096, 2025, 192, 1, 1, 448, 8748, 32000, 32000, 8748, 448, 1, 1, 1024, 35721, 221184, 390625, 221184, 35721, 1024, 1, 1, 2304, 139968, 1404928, 4050000, 4050000
Offset: 1

Views

Author

Michael Somos, Jun 23 2002

Keywords

Examples

			From _Andrew Howroyd_, Oct 29 2019: (Start)
Array begins:
============================================================
n\k | 1   2     3       4        5         6           7
----+-------------------------------------------------------
  1 | 1   1     1       1        1         1           1 ...
  2 | 1   4    12      32       80       192         448 ...
  3 | 1  12    81     432     2025      8748       35721 ...
  4 | 1  32   432    4096    32000    221184     1404928 ...
  5 | 1  80  2025   32000   390625   4050000    37515625 ...
  6 | 1 192  8748  221184  4050000  60466176   784147392 ...
  7 | 1 448 35721 1404928 37515625 784147392 13841287201 ...
  ...
(End)
		

References

  • J. W. Moon, Counting Labeled Trees, Issue 1 of Canadian mathematical monographs, Canadian Mathematical Congress, 1970.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Exercise 5.66.

Crossrefs

Columns 2..3 are A001787, A069996.
Main diagonal is A068087.
Antidiagonal sums are A132609.

Programs

  • Mathematica
    t[n_, k_] := n^(k-1) * k^(n-1); Table[ t[n-k+1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 21 2013 *)
  • PARI
    {T(n, k) = if( n<1 || k<1, 0, n^(k-1) * k^(n-1))}

Formula

T(n, k) = n^(k-1) * k^(n-1).
E.g.f.: A(x,y) - 1, where: A(x,y) = exp( x*exp( y*A(x,y) ) ) = Sum_{n>=0} Sum_{k=0..n} (n-k)^k * (k+1)^(n-k-1) * x^(n-k)/(n-k)! * y^k/k!. - Paul D. Hanna, Jan 22 2019

Extensions

Scoins reference from Philippe Deléham, Dec 22 2003

A070968 Number of cycles in the complete bipartite graph K(n,n).

Original entry on oeis.org

0, 1, 15, 204, 3940, 113865, 4662231, 256485040, 18226108944, 1623855701385, 177195820499335, 23237493232953516, 3605437233380095620, 653193551573628900289, 136634950180317224866335, 32681589590709963123092160, 8863149183726257535369633856
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 17 2002

Keywords

Comments

Also the number of chordless cycles in the n X n rook graph. - Eric W. Weisstein, Nov 27 2017

Crossrefs

Row sums of A291909.
Main diagonal of A360849.

Programs

  • Maple
    seq(simplify((1/4)*hypergeom([1, 2, 2-n, 2-n], [3], 1)*(n-1)^2*n^2), n=1..20); # Robert Israel, Jan 09 2018
  • Mathematica
    Table[Sum[Binomial[n, k]^2*k!*(k - 1)!, {k, 2, n}]/2, {n, 1, 17}]
    Table[n^2 (HypergeometricPFQ[{1, 1, 1 - n, 1 - n}, {2}, 1] - 1)/2, {n, 20}] (* Eric W. Weisstein, Dec 14 2017 *)
  • PARI
    for(n=1,50,print1(sum(k=2,n,binomial(n,k)^2 * k! * (k-1)!/2),","))

Formula

a(n) = Sum_{k=2..n} C(n,k)^2 * k! * (k-1)! / 2.
Recurrence: (n-2)^2*(2*n^3 - 19*n^2 + 58*n - 59)*a(n) = 2*(2*n^7 - 31*n^6 + 200*n^5 - 700*n^4 + 1442*n^3 - 1764*n^2 + 1205*n - 363)*a(n-1) - (n-1)^2*(2*n^7 - 35*n^6 + 266*n^5 - 1139*n^4 + 2962*n^3 - 4671*n^2 + 4130*n - 1578)*a(n-2) + 2*(n-2)^2*(n-1)^2*(2*n^5 - 26*n^4 + 134*n^3 - 342*n^2 + 431*n - 217)*a(n-3) - (n-3)^2*(n-2)^2*(n-1)^2*(2*n^3 - 13*n^2 + 26*n - 18)*a(n-4). - Vaclav Kotesovec, Mar 08 2016
a(n) ~ c * n! * (n-1)!, where c = BesselI(0,2)/2 = 1.1397926511680336337186... . - Vaclav Kotesovec, Mar 08 2016

Extensions

More terms from Benoit Cloitre and Robert G. Wilson v, May 20 2002
a(16)-a(17) from Andrew Howroyd, Jan 08 2018

A294360 G.f. A(x) satisfies: [x^(n-1)] A(x)^(n^2) = (n^2)^(n-1) for n>=1.

Original entry on oeis.org

1, 1, 5, 146, 9935, 1161399, 206499453, 52093726159, 17770811461875, 7903030237890371, 4450363873663943294, 3098938855124650814264, 2616552190721485829559668, 2635178871851323631797948230, 3121810359776427044817295874677, 4298670834657263815567279951080956, 6809336162211769799756516349665301635, 12296952422064277377043754761717448273557, 25116528778581121454413639996325045161219974
Offset: 0

Views

Author

Paul D. Hanna, Nov 01 2017

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 146*x^3 + 9935*x^4 + 1161399*x^5 + 206499453*x^6 + 52093726159*x^7 + 17770811461875*x^8 + 7903030237890371*x^9 + 4450363873663943294*x^10 + 3098938855124650814264*x^11 + 2616552190721485829559668*x^12 +...
such that the coefficient of x^(n-1) in A(x)^(n^2) equals (n^2)^(n-1) for n>=1.
The table of coefficients of x^k in A(x)^(n^2) begin:
n=1: [1, 1, 5, 146, 9935, 1161399, 206499453, ...];
n=2: [1, 4, 26, 648, 41703, 4775648, 840796570, ...];
n=3: [1, 9, 81, 1758, 102213, 11266209, 1949437539, ...];
n=4: [1, 16, 200, 4096, 207220, 21470032, 3617873616, ...];
n=5: [1, 25, 425, 8950, 390625, 36920005, 5985228975, ...];
n=6: [1, 36, 810, 18696, 723375, 60466176, 9272944890, ...];
n=7: [1, 49, 1421, 37338, 1347843, 97588547, 13841287201, ...];
n=8: [1, 64, 2336, 71168, 2535248, 159036480, 20303433408, 4398046511104, ...]; ...
in which the main diagonal begins:
[1, 4, 81, 4096, 390625, 60466176, 13841287201, 4398046511104, ..., (n^2)^(n-1), ...].
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(m=2,n+1, A = concat(A,0); A[m] = ( (m^2)^(m-1) - Vec( Ser(A)^(m^2) )[m] )/m^2);A[n+1]}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) ~ c * n^(2*n - 2), where c = exp(2 - exp(-2)) = 6.453771681742981632532303... - Vaclav Kotesovec, Aug 11 2021, updated Mar 18 2024

A070285 a(n) = n^(n-2) * (n-1)^(n-1).

Original entry on oeis.org

1, 12, 432, 32000, 4050000, 784147392, 215886856192, 80244904034304, 38742048900000000, 23579476910000000000, 17665746626579203620864, 15979082092619945289449472, 17171174753799627467382181888, 21626132883476724540000000000000, 31553580184752881664000000000000000
Offset: 2

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 10 2002

Keywords

Comments

Number of spanning trees in the bipartite graph K(n,n-1).

References

  • J. J. Sylvester, On the change of systems of independent variables, Quarterly Journal of Mathematics, i. (1857), pp. 42-56; Collected Mathematical Papers, Volume 2, Cambridge (1908), pp. 65-85, see page 76.

Crossrefs

Cf. A068087.

Programs

  • Magma
    [n^(n-2) * (n-1)^(n-1): n in [2..20]]; // Vincenzo Librandi, Mar 04 2014
  • Maple
    A070285:=n->n^(n-2) * (n-1)^(n-1); seq(A070285(n), n=2..15); # Wesley Ivan Hurt, Feb 26 2014
  • Mathematica
    Table[n^(n - 2)*(n - 1)^(n - 1), {n, 2, 15}]

Extensions

Edited by Robert G. Wilson v, May 14 2002
More terms from Vincenzo Librandi, Mar 04 2014

A328889 Number of acyclic edge covers of the complete bipartite graph K_{n,n}.

Original entry on oeis.org

1, 6, 132, 6728, 632970, 96208632, 21634786586, 6765592120576, 2811089200308642, 1498814096387846600, 997811910708863804202, 811362765374061475234464, 791392079095826028308709026, 912043721764132114072259699656, 1226095938791120621169019081161450
Offset: 1

Views

Author

Andrew Howroyd, Oct 29 2019

Keywords

Crossrefs

Main diagonal of A328888.
Cf. A068087 (spanning trees).
Cf. A297077 (not necessarily covering edge sets).

A255192 Triangle of number of connected subgraphs of K(n,n) with m edges.

Original entry on oeis.org

1, 4, 1, 81, 78, 36, 9, 1, 4096, 8424, 9552, 7464, 4272, 1812, 560, 120, 16, 1, 390625, 1359640, 2696200, 3880300, 4394600, 4059000, 3111140, 1994150, 1070150, 478800, 176900, 53120, 12650, 2300, 300, 25, 1, 60466176, 314452800, 939988800, 2075760000
Offset: 1

Views

Author

Thomas Dybdahl Ahle, Feb 16 2015

Keywords

Comments

m ranges from 2n-1 to n^2.
First column is A068087.

Examples

			Triangle begins:
----|------------------------------------------------------------
n\m |  1 2 3 4  5  6    7    8    9   10   11   12  13  14 15 16
----|------------------------------------------------------------
1   |  1
2   |  - - 4 1
3   |  - - - - 81 78   36    9    1
4   |  - - - -  -  - 4096 8424 9552 7464 4272 1812 560 120 16  1
		

Crossrefs

Cf. A005333 (row sums?).

Programs

  • Python
    from math import comb as binomial
    def f(x, a, b, k):
        if b == k == 0:
            return 1
        if b == 0 or k == 0:
            return 0
        if x == a:
            return sum(binomial(a, n) * f(x, x, b - 1, k - n) for n in range(1, a + 1))
        return sum(binomial(b, n) * f(x, x, n, k2) * f(n, b, a - x, k - k2)
            for n in range(1, b + 1) for k2 in range(0, k + 1) )
    def a(n, m):
        return f(1, n, n, m)
    for n in range(1, 5):
        print([a(n, m) for m in range(1, n * n + 1)])

Formula

Sum(k>=0, T(n,k)*(-1)^k ) = A136126(2*n-1,n-1) = A092552(n+1), alternating row sums.
Showing 1-6 of 6 results.