A132609
Antidiagonal sum of table A072590(n,k) = n^(k-1)*k^(n-1) for n>=1.
Original entry on oeis.org
1, 2, 6, 26, 147, 1026, 8532, 82394, 906485, 11194402, 153347766, 2307805402, 37851581159, 672037936898, 12841521329896, 262772642843802, 5733086299727913, 132853067341477538, 3258726189638877610
Offset: 1
-
Table[Sum[(n - k + 1)^(k - 1) k^(n - k), {k, n}], {n, 30}] (* Harvey P. Dale, Jun 26 2021 *)
-
a(n)=sum(k=1,n,(n-k+1)^(k-1)*k^(n-k))
A001787
a(n) = n*2^(n-1).
Original entry on oeis.org
0, 1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120, 11264, 24576, 53248, 114688, 245760, 524288, 1114112, 2359296, 4980736, 10485760, 22020096, 46137344, 96468992, 201326592, 419430400, 872415232, 1811939328, 3758096384, 7784628224, 16106127360, 33285996544
Offset: 0
a(2)=4 since 2314, 2341,3124 and 4123 are the only 132-avoiding permutations of 1234 containing exactly one increasing subsequence of length 3.
x + 4*x^2 + 12*x^3 + 32*x^4 + 80*x^5 + 192*x^6 + 448*x^7 + ...
a(5) = 1*0 + 5*1 + 10*2 + 10*3 + 5*4 + 1*5 = 80, with 1,5,10,10,5,1 the 5th row of Pascal's triangle. - _J. M. Bergot_, Apr 29 2014
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 131.
- Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 282.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Franklin T. Adams-Watters, Table of n, a(n) for n = 0..500
- Rémi Abgrall and Wasilij Barsukow, Extensions of Active Flux to arbitrary order of accuracy, arXiv:2208.14476 [math.NA], 2022.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- F. S. Al-Kharousi, A. Umar, and M. M. Zubairu, On injective partial Catalan monoids, arXiv:2501.00285 [math.GR], 2024. See p. 9.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018.
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
- Douglas W. Bass and I. Hal Sudborough, Hamilton decompositions and (n/2)-factorizations of hypercubes, J. Graph Algor. Appl., Vol. 7, No. 1 (2003), pp. 79-98.
- Nicolas Bonichon and Pierre-Jean Morel, Baxter d-permutations and other pattern avoiding classes, arXiv:2202.12677 [math.CO], 2022.
- Harlan J. Brothers, Pascal's Prism: Supplementary Material.
- David Callan, A recursive bijective approach to counting permutations containing 3-letter patterns, arXiv:math/0211380 [math.CO], 2002.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Frank Ellermann, Illustration of binomial transforms
- Mohamed Elkadi and Bernard Mourrain, Symbolic-numeric methods for solving polynomial equations and applications, Chap 3. of A. Dickenstein and I. Z. Emiris, eds., Solving Polynomial Equations, Springer, 2005, pp. 126-168. See p. 152.
- Alejandro Erickson, Frank Ruskey, Mark Schurch and Jennifer Woodcock, Auspicious Tatami Mat Arrangements, The 16th Annual International Computing and Combinatorics Conference (COCOON 2010), July 19-21, Nha Trang, Vietnam. LNCS 6196 (2010) 288-297.
- Samuele Giraudo, Pluriassociative algebras I: The pluriassociative operad, Advances in Applied Mathematics, Vol. 77 (2016), pp. 1-42, arXiv preprint, arXiv:1603.01040 [math.CO], 2016.
- Frank A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424.
- Frank A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424. (Annotated scanned copy)
- Frank A. Haight, Letter to N. J. A. Sloane, n.d.
- V. E. Hoggatt, Jr., Letter to N. J. A. Sloane, Jul 06, 1976
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=4, q=-4.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 408. (Dead link)
- Milan Janjić, Two Enumerative Functions.
- Milan Janjić and Boris Petković, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
- Milan Janjić and Boris Petković, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- C. W. Jones, J. C. P. Miller, J. F. C. Conn, and R. C. Pankhurst, Tables of Chebyshev polynomials, Proc. Roy. Soc. Edinburgh. Sect. A. 62, (1946). 187-203.
- Kenji Kimura and Saburo Higuchi, Monte Carlo estimation of the number of tatami tilings, International Journal of Modern Physics C, Vol. 27, No. 11 (2016), 1650128, arXiv preprint, arXiv:1509.05983 [cond-mat.stat-mech], 2015-2016, eq. (1).
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, University of Kentucky Research Reports (2004). (Dead link)
- Sergey Kitaev, Jeffrey Remmel and Mark Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv preprint arXiv:1201.6243 [math.CO], 2012.
- T. Y. Lam, On the diagonalization of quadratic forms, Math. Mag., 72 (1999), 231-235 (see page 234).
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. See Eq.(3).
- Duško Letić, Nenad Cakić, Branko Davidović, Ivana Berković and Eleonora Desnica, Some certain properties of the generalized hypercubical functions, Advances in Difference Equations, 2011, 2011:60.
- Toufik Mansour and Armend Sh. Shabani, Bargraphs in bargraphs, Turkish Journal of Mathematics (2018) Vol. 42, Issue 5, 2763-2773.
- Ronald Orozco López, Deformed Differential Calculus on Generalized Fibonacci Polynomials, arXiv:2211.04450 [math.CO], 2022.
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- Michael Penn, on the alternating sum of subsets, YouTube video, 2021.
- Michael Penn, Rare proof of well-known sum, YouTube video, 2023.
- Aleksandar Petojević, A Note about the Pochhammer Symbol, Mathematica Moravica, Vol. 12-1 (2008), 37-42.
- Maxwell Phillips, Ahmed Ammar, and Firas Hassan, A Generalized Multi-Level Structure for High-Precision Binary Decoders, IEEE 67th Int'l Midwest Symp. Circ. Sys. (MWSCAS 2024), 42-46.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Lara Pudwell, Nathan Chenette and Manda Riehl, Statistics on Hypercube Orientations, AMS Special Session on Experimental and Computer Assisted Mathematics, Joint Mathematics Meetings (Denver 2020).
- Lara Pudwell, Connor Scholten, Tyler Schrock and Alexa Serrato, Noncontiguous pattern containment in binary trees, ISRN Comb. 2014, Article ID 316535, 8 p. (2014), chapter 5.2.
- Aaron Robertson, Permutations containing and avoiding 123 and 132 patterns, Discrete Math. and Theoret. Computer Sci., 3 (1999), 151-154.
- Aaron Robertson, Herbert S. Wilf and Doron Zeilberger, Permutation patterns and continued fractions, Electr. J. Combin. 6, 1999, #R38.
- Thomas Selig and Haoyue Zhu, Complete non-ambiguous trees and associated permutations: connections through the Abelian sandpile model, arXiv:2303.15756 [math.CO], 2023, see p. 16.
- Jeffrey Shallit, Letter to N. J. A. Sloane Mar 14, 1979, concerning A001787, A005209, A005210, A005211.
- Nathan Sun, On d-permutations and Pattern Avoidance Classes, arXiv:2208.08506 [math.CO], 2022.
- Eric Weisstein's World of Mathematics, Hypercube.
- Eric Weisstein's World of Mathematics, Hypercube Graph.
- Eric Weisstein's World of Mathematics, Leibniz Harmonic Triangle.
- Eric Weisstein's World of Mathematics, Maximal Clique.
- Eric Weisstein's World of Mathematics, Maximum Clique.
- Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, vol. 8 (2008).
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Cf.
A053109,
A001788,
A001789,
A000337,
A130300,
A134083,
A002064,
A027471,
A003945,
A059670,
A167591,
A059260,
A016777,
A212697,
A000079,
A263646.
-
a001787 n = n * 2 ^ (n - 1)
a001787_list = zipWith (*) [0..] $ 0 : a000079_list
-- Reinhard Zumkeller, Jul 11 2014
-
[n*2^(n-1): n in [0..40]]; // Vincenzo Librandi, Feb 04 2016
-
spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..29); # Zerinvary Lajos, Oct 09 2006
A001787:=1/(2*z-1)^2; # Simon Plouffe in his 1992 dissertation, dropping the initial zero
-
Table[Sum[Binomial[n, i] i, {i, 0, n}], {n, 0, 30}] (* Geoffrey Critzer, Mar 18 2009 *)
f[n_] := n 2^(n - 1); f[Range[0, 40]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
Array[# 2^(# - 1) &, 40, 0] (* Harvey P. Dale, Jul 26 2011 *)
Join[{0}, Table[n 2^(n - 1), {n, 20}]] (* Eric W. Weisstein, Dec 01 2017 *)
Join[{0}, LinearRecurrence[{4, -4}, {1, 4}, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
CoefficientList[Series[x/(-1 + 2 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
-
{a(n) = if( n<0, 0, n * 2^(n-1))}
-
concat(0, Vec(x/(1-2*x)^2 + O(x^50))) \\ Altug Alkan, Nov 03 2015
-
def A001787(n): return n*(1<Chai Wah Wu, Nov 14 2022
A068087
a(n) = n^(2*n-2).
Original entry on oeis.org
1, 4, 81, 4096, 390625, 60466176, 13841287201, 4398046511104, 1853020188851841, 1000000000000000000, 672749994932560009201, 552061438912436417593344, 542800770374370512771595361, 629983141281877223603213172736, 852226929923929274082183837890625
Offset: 1
Sharon Sela (sharonsela(AT)hotmail.com), May 06 2002
A328887
Array read by antidiagonals: T(n,m) is the number of acyclic edge sets in the complete bipartite graph K_{n,m}.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 15, 8, 1, 1, 16, 54, 54, 16, 1, 1, 32, 189, 328, 189, 32, 1, 1, 64, 648, 1856, 1856, 648, 64, 1, 1, 128, 2187, 9984, 16145, 9984, 2187, 128, 1, 1, 256, 7290, 51712, 129000, 129000, 51712, 7290, 256, 1, 1, 512, 24057, 260096, 968125, 1475856, 968125, 260096, 24057, 512, 1
Offset: 0
Array begins:
====================================================================
n\m | 0 1 2 3 4 5 6 7
----+---------------------------------------------------------------
0 | 1 1 1 1 1 1 1 1 ...
1 | 1 2 4 8 16 32 64 128 ...
2 | 1 4 15 54 189 648 2187 7290 ...
3 | 1 8 54 328 1856 9984 51712 260096 ...
4 | 1 16 189 1856 16145 129000 968125 6925000 ...
5 | 1 32 648 9984 129000 1475856 15450912 151201728 ...
6 | 1 64 2187 51712 968125 15450912 219682183 2862173104 ...
7 | 1 128 7290 260096 6925000 151201728 2862173104 48658878080 ...
...
-
\\ here U is A328888 as matrix.
U(n, m=n)={my(M=matrix(n, m), N=matrix(n, m, n, m, n^(m-1) * m^(n-1))); for(n=1, n, for(m=1, m, M[n,m] = N[n,m] + sum(i=1, n-1, sum(j=1, m-1, binomial(n-1, i-1)*binomial(m, j)*N[i,j]*M[n-i, m-j])))); M}
T(n, m=n)={my(M=U(n, m)); matrix(n+1, m+1, n, m, 1 + sum(i=1, n-1, sum(j=1, m-1, binomial(n-1,i)*binomial(m-1,j)*M[i,j])))}
{ my(A=T(7)); for(i=1, #A, print(A[i,])) }
A329054
Array read by antidiagonals: T(n,m) is the number of unlabeled bicolored trees with n nodes of one color and m of the other.
Original entry on oeis.org
1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 4, 2, 1, 0, 0, 1, 3, 7, 7, 3, 1, 0, 0, 1, 3, 10, 14, 10, 3, 1, 0, 0, 1, 4, 14, 28, 28, 14, 4, 1, 0, 0, 1, 4, 19, 45, 65, 45, 19, 4, 1, 0, 0, 1, 5, 24, 73, 132, 132, 73, 24, 5, 1, 0
Offset: 0
Array begins:
===================================================
n\m | 0 1 2 3 4 5 6 7 8
----+----------------------------------------------
0 | 1, 1, 0, 0, 0, 0, 0, 0, 0, ...
1 | 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2 | 0, 1, 1, 2, 2, 3, 3, 4, 4, ...
3 | 0, 1, 2, 4, 7, 10, 14, 19, 24, ...
4 | 0, 1, 2, 7, 14, 28, 45, 73, 105, ...
5 | 0, 1, 3, 10, 28, 65, 132, 242, 412, ...
6 | 0, 1, 3, 14, 45, 132, 316, 693, 1349, ...
7 | 0, 1, 4, 19, 73, 242, 693, 1742, 3927, ...
8 | 0, 1, 4, 24, 105, 412, 1349, 3927, 10079, ...
...
The equivalent array for labeled nodes is
A072590.
-
EulerXY(A)={my(j=serprec(A,x)); exp(sum(i=1, j, 1/i * subst(subst(A + x * O(x^(j\i)), x, x^i), y, y^i)))}
R(n)={my(A=O(x)); for(j=1, 2*n, A = if(j%2, 1, y)*x*EulerXY(A)); A};
P(n)={my(r1=R(n), r2=x*EulerXY(r1), s=r1+r2-r1*r2); Vec(1 + s)}
{ my(A=P(10)); for(n=0, #A\2, for(k=0, #A\2, print1(polcoef(A[n+k+1], k), ", ")); print) }
A328888
Array read by antidiagonals: T(n,m) is the number of acyclic edge covers of the complete bipartite graph K_{n,m}.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 18, 18, 1, 1, 46, 132, 46, 1, 1, 110, 696, 696, 110, 1, 1, 254, 3150, 6728, 3150, 254, 1, 1, 574, 13086, 51760, 51760, 13086, 574, 1, 1, 1278, 51492, 348048, 632970, 348048, 51492, 1278, 1, 1, 2814, 195180, 2143736, 6466980, 6466980, 2143736, 195180, 2814, 1
Offset: 1
Array begins:
=============================================================
n\m | 1 2 3 4 5 6 7
----+--------------------------------------------------------
1 | 1 1 1 1 1 1 1 ...
2 | 1 6 18 46 110 254 574 ...
3 | 1 18 132 696 3150 13086 51492 ...
4 | 1 46 696 6728 51760 348048 2143736 ...
5 | 1 110 3150 51760 632970 6466980 58620030 ...
6 | 1 254 13086 348048 6466980 96208632 1231832364 ...
7 | 1 574 51492 2143736 58620030 1231832364 21634786586 ...
...
-
T(n, m=n)={my(M=matrix(n, m), N=matrix(n, m, n, m, n^(m-1) * m^(n-1))); for(n=1, n, for(m=1, m, M[n,m] = N[n,m] + sum(i=1, n-1, sum(j=1, m-1, binomial(n-1, i-1)*binomial(m, j)*N[i,j]*M[n-i, m-j])))); M}
{ my(A=T(7)); for(i=1, #A, print(A[i,])) }
A161552
E.g.f. satisfies: A(x,y) = exp(x*y*exp(x*A(x,y))).
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 3, 12, 1, 0, 4, 72, 48, 1, 0, 5, 320, 810, 160, 1, 0, 6, 1200, 8640, 6480, 480, 1, 0, 7, 4032, 70875, 143360, 42525, 1344, 1, 0, 8, 12544, 489888, 2240000, 1792000, 244944, 3584, 1, 0, 9, 36864, 3000564, 27869184, 49218750, 18579456, 1285956, 9216, 1
Offset: 0
Triangle begins:
1;
0,1;
0,2,1;
0,3,12,1;
0,4,72,48,1;
0,5,320,810,160,1;
0,6,1200,8640,6480,480,1;
0,7,4032,70875,143360,42525,1344,1;
0,8,12544,489888,2240000,1792000,244944,3584,1;
0,9,36864,3000564,27869184,49218750,18579456,1285956,9216,1; ...
-
Join[{1}, Table[Binomial[n, k]*(n - k + 1)^(k - 1)*k^(n - k), {n, 1, 10}, {k, 0, n}]] // Flatten (* G. C. Greubel, Nov 18 2017 *)
-
{T(n,k)=binomial(n,k)*(n-k+1)^(k-1)*k^(n-k)}
-
{T(n,k)=local(A=1+x); for(i=0,n, A=exp(x*y*exp(x*A+O(x^n)))); n!*polcoeff(polcoeff(A,n,x),k,y)}
Original entry on oeis.org
1, 13, 94, 526, 2551, 11299, 47020, 186988, 718429, 2686729, 9831658, 35340826, 125154355, 437641663, 1513809688, 5187129880, 17627632249, 59469045061, 199327841590, 664232428390, 2201904349231, 7264715299483, 23865295832644, 78091766836996
Offset: 1
- "Supplemento al Periodico di Matematica", Raffaello Giusti Editore (Livorno) - Apr / May, 1913 - p. 99 (Problem 1277, case x=3).
-
[(3^n*(n^2-n+1)-1)/2: n in [1..25]]; // Vincenzo Librandi, Aug 19 2013
-
CoefficientList[Series[(1 + 3 x) / ((1 - x) (1 - 3 x)^3), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 19 2013 *)
-
a(n) = (3^n*(n^2-n+1)-1)/2 \\ Michel Marcus, Jun 07 2013
A381726
Number of minimum connected dominating sets in the n X n black bishop graph.
Original entry on oeis.org
1, 2, 1, 1, 2, 13, 83, 513, 4052, 41197, 462069, 5597201, 76094134, 1153902701, 18981358311, 336018968449, 6413439874792, 131386321421901, 2867812411156521, 66426533670738769, 1629082910078009770, 42175861619149917325, 1148999152027728530363, 32856688248674995989889
Offset: 1
-
Join[{1, 2}, Table[Sum[(2 k - 1)^(n - 2 k - 1) (n - 2 k)^(2 (k - 1)), {k, Floor[(n - 1)/2]}], {n, 3, 20}]] (* Eric W. Weisstein, Mar 22 2025 *)
-
\\ B(n,k) is A072590.
B(n,k) = n^(k-1) * k^(n-1)
a(n) = if(n <= 2, n, sum(k=1, (n-1)\2, B(n-2*k, 2*k-1))) \\ Andrew Howroyd, Mar 20 2025
A381727
Number of minimum connected dominating sets in the n X n white bishop graph.
Original entry on oeis.org
2, 4, 1, 4, 13, 64, 513, 4480, 41197, 444416, 5597201, 77253632, 1153902701, 18870222848, 336018968449, 6428081455104, 131386321421901, 2865273888571392, 66426533670738769, 1629643279560867840, 42175861619149917325, 1148845693539400548352, 32856688248674995989889
Offset: 2
-
Join[{2, 4}, Table[Sum[(2 k)^(n - 2 k - 2) (n - 2 k - 1)^(2 k - 1), {k, Floor[n/2] - 1}], {n, 4, 20}]] (* Eric W. Weisstein, Mar 22 2025 *)
-
\\ B(n, k) is A072590.
B(n,k) = n^(k-1) * k^(n-1)
a(n) = if(n <= 3, 2*n-2, sum(k=1, n\2-1, B(n-1-2*k, 2*k))) \\ Andrew Howroyd, Mar 20 2025
Showing 1-10 of 11 results.
Comments