A122086
Number of unlabeled free bicolored trees with n nodes (the colors are not interchangeable).
Original entry on oeis.org
2, 1, 2, 3, 6, 10, 22, 42, 94, 203, 470, 1082, 2602, 6270, 15482, 38525, 97258, 247448, 635910, 1645411, 4289010, 11245670, 29656148, 78595028, 209273780, 559574414, 1502130920, 4046853091, 10939133170, 29661655793
Offset: 1
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.
-
\\ here TreeGf is A000081 as g.f.
TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
seq(n)={Vec(2*TreeGf(n) - TreeGf(n)^2)} \\ Andrew Howroyd, Nov 02 2019
A119857
Number of equicolored (unrooted) trees on 2n nodes.
Original entry on oeis.org
1, 1, 4, 14, 65, 316, 1742, 10079, 61680, 391473, 2565262, 17237962, 118341446, 827194809, 5872518213, 42256545977, 307681822711, 2263881127801, 16813356777456, 125917441081662, 950148951332802, 7218810159035143, 55187741462110393, 424318236236124092
Offset: 1
-
\\ R is b.g.f of rooted trees x nodes, y in one part
R(n)={my(A=O(x)); for(j=1, 2*n, A = if(j%2,1,y)*x*exp(sum(i=1, j, 1/i * subst(subst(A + x * O(x^(j\i)), x, x^i), y, y^i)))); A};
seq(n)={my(A=Pol(R(n))); my(r(x,y)=substvec(A, ['x,'y], [x,y/x])); Vec(polcoeff((r(x,y/x) + r(y/x,x) - r(x,y/x)*r(y/x,x)), 0) + O(y*y^n))} \\ Andrew Howroyd, May 23 2018
A122085
Triangle read by rows: T(n,k) = number of unlabeled free bicolored trees with n nodes (n >= 1) and k (1 <= k <= n-1, except k=0 or 1 if n=1, k=1 if n=2) nodes of one color and n-k nodes of the other color (the colors are not interchangeable).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 7, 7, 3, 1, 1, 3, 10, 14, 10, 3, 1, 1, 4, 14, 28, 28, 14, 4, 1, 1, 4, 19, 45, 65, 45, 19, 4, 1, 1, 5, 24, 73, 132, 132, 73, 24, 5, 1, 1, 5, 30, 105, 242, 316, 242, 105, 30, 5, 1, 1, 6, 37, 152, 412, 693, 693, 412, 152
Offset: 1
K M N gives the number N of unlabeled free bicolored trees with K nodes of one color and M nodes of the other color.
0 1 1
1 0 1
Total( 1) = 2
1 1 1
Total( 2) = 1
1 2 1
2 1 1
Total( 3) = 2
1 3 1
2 2 1
3 1 1
Total( 4) = 3
1 4 1
2 3 2
3 2 2
4 1 1
Total( 5) = 6
1 5 1
2 4 2
3 3 4
4 2 2
5 1 1
Total( 6) = 10
.
From _Andrew Howroyd_, Nov 02 2019: (Start)
Triangle for n >= 2, 1 <= k < n:
2 | 1;
3 | 1, 1;
4 | 1, 1, 1;
5 | 1, 2, 2, 1;
6 | 1, 2, 4, 2, 1;
7 | 1, 3, 7, 7, 3, 1;
8 | 1, 3, 10, 14, 10, 3, 1;
9 | 1, 4, 14, 28, 28, 14, 4, 1;
10 | 1, 4, 19, 45, 65, 45, 19, 4, 1;
11 | 1, 5, 24, 73, 132, 132, 73, 24, 5, 1;
12 | 1, 5, 30, 105, 242, 316, 242, 105, 30, 5, 1;
...
(End)
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.
Cf.
A329054 (regular array with same data).
A329052
Array read by antidiagonals: T(n,m) is the number of unlabeled bicolored acyclic graphs with n nodes of one color and m of the other.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 21, 15, 6, 1, 1, 7, 21, 38, 38, 21, 7, 1, 1, 8, 28, 62, 82, 62, 28, 8, 1, 1, 9, 36, 95, 158, 158, 95, 36, 9, 1, 1, 10, 45, 138, 278, 356, 278, 138, 45, 10, 1, 1, 11, 55, 192, 459, 724, 724, 459, 192, 55, 11, 1
Offset: 0
Array begins:
=======================================================
n\m | 0 1 2 3 4 5 6 7 8
----+--------------------------------------------------
0 | 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1 | 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
2 | 1, 3, 6, 10, 15, 21, 28, 36, 45, ...
3 | 1, 4, 10, 21, 38, 62, 95, 138, 192, ...
4 | 1, 5, 15, 38, 82, 158, 278, 459, 716, ...
5 | 1, 6, 21, 62, 158, 356, 724, 1359, 2388, ...
6 | 1, 7, 28, 95, 278, 724, 1690, 3612, 7143, ...
7 | 1, 8, 36, 138, 459, 1359, 3612, 8731, 19404, ...
8 | 1, 9, 45, 192, 716, 2388, 7143, 19404, 48213, ...
...
The equivalent array for labeled nodes is
A328887.
-
EulerXY(A)={my(j=serprec(A,x)); exp(sum(i=1, j, 1/i * subst(subst(A + x * O(x^(j\i)), x, x^i), y, y^i)))}
R(n)={my(A=O(x)); for(j=1, 2*n, A = if(j%2, 1, y)*x*EulerXY(A)); A};
P(n)={my(r1=R(n), r2=x*EulerXY(r1), s=r1+r2-r1*r2); Vec(EulerXY(s))}
{ my(A=P(10)); for(n=0, #A\2, for(k=0, #A\2, print1(polcoef(A[n+k+1], k), ", ")); print) }
A122087
Triangle read by rows: T(n,k) = number of unlabeled free bicolored trees with n nodes (n >= 1) and k (1 <= k <= floor(n/2), except k = 0 if n = 1 ) nodes of one color and n-k nodes of the other color (the colors are interchangeable).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 1, 2, 3, 1, 3, 7, 1, 3, 10, 9, 1, 4, 14, 28, 1, 4, 19, 45, 37, 1, 5, 24, 73, 132, 1, 5, 30, 105, 242, 168, 1, 6, 37, 152, 412, 693, 1, 6, 44, 204, 660, 1349, 895, 1, 7, 52, 274, 1008, 2472, 3927, 1, 7, 61, 351, 1479, 4219, 8105, 5097, 1, 8
Offset: 1
K M N gives the number N of unlabeled free bicolored trees with K nodes of one color and M nodes of the other color.
0 1 1
Total( 1) = 1
1 1 1
Total( 2) = 1
1 2 1
Total( 3) = 1
1 3 1
2 2 1
Total( 4) = 2
1 4 1
2 3 2
Total( 5) = 3
1 5 1
2 4 2
3 3 3
Total( 6) = 6
1 6 1
2 5 3
3 4 7
Total( 7) = 11
1 7 1
2 6 3
3 5 10
4 4 9
Total( 8) = 23
From _Andrew Howroyd_, Apr 05 2023: (Start)
Triangle begins:
n\k| 0 1 2 3 4 5 6
----+----------------------------
1 | 1;
2 | . 1;
3 | . 1;
4 | . 1, 1;
5 | . 1, 2;
6 | . 1, 2, 3;
7 | . 1, 3, 7;
8 | . 1, 3, 10, 9;
9 | . 1, 4, 14, 28;
10 | . 1, 4, 19, 45, 37;
11 | . 1, 5, 24, 73, 132;
12 | . 1, 5, 30, 105, 242, 168;
...
(End)
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.
Showing 1-5 of 5 results.
Comments