A125702
Number of connected categories with n objects and 2n-1 morphisms.
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 22, 42, 94, 203, 470, 1082, 2602, 6270, 15482, 38525, 97258, 247448, 635910, 1645411, 4289010, 11245670, 29656148, 78595028, 209273780, 559574414, 1502130920, 4046853091, 10939133170, 29661655793
Offset: 1
From _Gus Wiseman_, Oct 30 2018: (Start)
Non-isomorphic representatives of the a(1) = 1 through a(6) = 10 multi-hypertrees of weight n - 1 with singletons allowed:
{} {{1}} {{12}} {{123}} {{1234}} {{12345}}
{{1}{1}} {{2}{12}} {{13}{23}} {{14}{234}}
{{1}{1}{1}} {{3}{123}} {{4}{1234}}
{{1}{2}{12}} {{2}{13}{23}}
{{2}{2}{12}} {{2}{3}{123}}
{{1}{1}{1}{1}} {{3}{13}{23}}
{{3}{3}{123}}
{{1}{2}{2}{12}}
{{2}{2}{2}{12}}
{{1}{1}{1}{1}{1}}
(End)
Same as
A122086 except for n = 1; see there for formulas. Cf.
A125699.
Cf.
A000081,
A000272,
A007716,
A007717,
A030019,
A052888,
A134954,
A317631,
A317632,
A318697,
A320921,
A321155.
-
\\ TreeGf gives gf of A000081.
TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
seq(n)={Vec(2*TreeGf(n) - TreeGf(n)^2 - x)} \\ Andrew Howroyd, Nov 02 2019
A329054
Array read by antidiagonals: T(n,m) is the number of unlabeled bicolored trees with n nodes of one color and m of the other.
Original entry on oeis.org
1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 4, 2, 1, 0, 0, 1, 3, 7, 7, 3, 1, 0, 0, 1, 3, 10, 14, 10, 3, 1, 0, 0, 1, 4, 14, 28, 28, 14, 4, 1, 0, 0, 1, 4, 19, 45, 65, 45, 19, 4, 1, 0, 0, 1, 5, 24, 73, 132, 132, 73, 24, 5, 1, 0
Offset: 0
Array begins:
===================================================
n\m | 0 1 2 3 4 5 6 7 8
----+----------------------------------------------
0 | 1, 1, 0, 0, 0, 0, 0, 0, 0, ...
1 | 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2 | 0, 1, 1, 2, 2, 3, 3, 4, 4, ...
3 | 0, 1, 2, 4, 7, 10, 14, 19, 24, ...
4 | 0, 1, 2, 7, 14, 28, 45, 73, 105, ...
5 | 0, 1, 3, 10, 28, 65, 132, 242, 412, ...
6 | 0, 1, 3, 14, 45, 132, 316, 693, 1349, ...
7 | 0, 1, 4, 19, 73, 242, 693, 1742, 3927, ...
8 | 0, 1, 4, 24, 105, 412, 1349, 3927, 10079, ...
...
The equivalent array for labeled nodes is
A072590.
-
EulerXY(A)={my(j=serprec(A,x)); exp(sum(i=1, j, 1/i * subst(subst(A + x * O(x^(j\i)), x, x^i), y, y^i)))}
R(n)={my(A=O(x)); for(j=1, 2*n, A = if(j%2, 1, y)*x*EulerXY(A)); A};
P(n)={my(r1=R(n), r2=x*EulerXY(r1), s=r1+r2-r1*r2); Vec(1 + s)}
{ my(A=P(10)); for(n=0, #A\2, for(k=0, #A\2, print1(polcoef(A[n+k+1], k), ", ")); print) }
A122085
Triangle read by rows: T(n,k) = number of unlabeled free bicolored trees with n nodes (n >= 1) and k (1 <= k <= n-1, except k=0 or 1 if n=1, k=1 if n=2) nodes of one color and n-k nodes of the other color (the colors are not interchangeable).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 7, 7, 3, 1, 1, 3, 10, 14, 10, 3, 1, 1, 4, 14, 28, 28, 14, 4, 1, 1, 4, 19, 45, 65, 45, 19, 4, 1, 1, 5, 24, 73, 132, 132, 73, 24, 5, 1, 1, 5, 30, 105, 242, 316, 242, 105, 30, 5, 1, 1, 6, 37, 152, 412, 693, 693, 412, 152
Offset: 1
K M N gives the number N of unlabeled free bicolored trees with K nodes of one color and M nodes of the other color.
0 1 1
1 0 1
Total( 1) = 2
1 1 1
Total( 2) = 1
1 2 1
2 1 1
Total( 3) = 2
1 3 1
2 2 1
3 1 1
Total( 4) = 3
1 4 1
2 3 2
3 2 2
4 1 1
Total( 5) = 6
1 5 1
2 4 2
3 3 4
4 2 2
5 1 1
Total( 6) = 10
.
From _Andrew Howroyd_, Nov 02 2019: (Start)
Triangle for n >= 2, 1 <= k < n:
2 | 1;
3 | 1, 1;
4 | 1, 1, 1;
5 | 1, 2, 2, 1;
6 | 1, 2, 4, 2, 1;
7 | 1, 3, 7, 7, 3, 1;
8 | 1, 3, 10, 14, 10, 3, 1;
9 | 1, 4, 14, 28, 28, 14, 4, 1;
10 | 1, 4, 19, 45, 65, 45, 19, 4, 1;
11 | 1, 5, 24, 73, 132, 132, 73, 24, 5, 1;
12 | 1, 5, 30, 105, 242, 316, 242, 105, 30, 5, 1;
...
(End)
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.
Cf.
A329054 (regular array with same data).
A329053
Number of bicolored acyclic graphs on n unlabeled nodes.
Original entry on oeis.org
1, 2, 4, 8, 16, 32, 65, 134, 280, 598, 1300, 2884, 6516, 15008, 35147, 83680, 202139, 494982, 1226753, 3074146, 7779561, 19863702, 51125018, 132541616, 345867101, 907922596, 2396276355, 6355845398, 16934718359, 45309972502, 121697068925, 328029259192
Offset: 0
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
seq(n)={concat([1], EulerT(Vec(2*TreeGf(n) - TreeGf(n)^2)))}
Showing 1-4 of 4 results.
Comments