cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A125702 Number of connected categories with n objects and 2n-1 morphisms.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 22, 42, 94, 203, 470, 1082, 2602, 6270, 15482, 38525, 97258, 247448, 635910, 1645411, 4289010, 11245670, 29656148, 78595028, 209273780, 559574414, 1502130920, 4046853091, 10939133170, 29661655793
Offset: 1

Views

Author

Keywords

Comments

Also number of connected antitransitive relations on n objects (antitransitive meaning a R b and b R c implies not a R c); equivalently, number of free oriented bipartite trees, with all arrows going from one part to the other part.
Also the number of non-isomorphic multi-hypertrees of weight n - 1 with singletons allowed. A multi-hypertree with singletons allowed is a connected set multipartition (multiset of sets) with density -1, where the density of a set multipartition is the weight (sum of sizes of the parts) minus the number of parts minus the number of vertices. - Gus Wiseman, Oct 30 2018

Examples

			From _Gus Wiseman_, Oct 30 2018: (Start)
Non-isomorphic representatives of the a(1) = 1 through a(6) = 10 multi-hypertrees of weight n - 1 with singletons allowed:
  {}  {{1}}  {{12}}    {{123}}      {{1234}}        {{12345}}
             {{1}{1}}  {{2}{12}}    {{13}{23}}      {{14}{234}}
                       {{1}{1}{1}}  {{3}{123}}      {{4}{1234}}
                                    {{1}{2}{12}}    {{2}{13}{23}}
                                    {{2}{2}{12}}    {{2}{3}{123}}
                                    {{1}{1}{1}{1}}  {{3}{13}{23}}
                                                    {{3}{3}{123}}
                                                    {{1}{2}{2}{12}}
                                                    {{2}{2}{2}{12}}
                                                    {{1}{1}{1}{1}{1}}
(End)
		

Crossrefs

Same as A122086 except for n = 1; see there for formulas. Cf. A125699.

Programs

  • PARI
    \\ TreeGf gives gf of A000081.
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={Vec(2*TreeGf(n) - TreeGf(n)^2 - x)} \\ Andrew Howroyd, Nov 02 2019

Formula

a(n) = A122086(n) for n > 1.
G.f.: 2*f(x) - f(x)^2 - x where f(x) is the g.f. of A000081. - Andrew Howroyd, Nov 02 2019

A329054 Array read by antidiagonals: T(n,m) is the number of unlabeled bicolored trees with n nodes of one color and m of the other.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 4, 2, 1, 0, 0, 1, 3, 7, 7, 3, 1, 0, 0, 1, 3, 10, 14, 10, 3, 1, 0, 0, 1, 4, 14, 28, 28, 14, 4, 1, 0, 0, 1, 4, 19, 45, 65, 45, 19, 4, 1, 0, 0, 1, 5, 24, 73, 132, 132, 73, 24, 5, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Nov 02 2019

Keywords

Comments

The two color classes are not interchangeable. Adjacent nodes cannot have the same color.
Essentially the same data as given in the irregular triangle A122085, but including complete columns for n = 0 and m = 0 to give a regular array.

Examples

			Array begins:
===================================================
n\m | 0  1  2   3    4    5     6     7      8
----+----------------------------------------------
  0 | 1, 1, 0,  0,   0,   0,    0,    0,     0, ...
  1 | 1, 1, 1,  1,   1,   1,    1,    1,     1, ...
  2 | 0, 1, 1,  2,   2,   3,    3,    4,     4, ...
  3 | 0, 1, 2,  4,   7,  10,   14,   19,    24, ...
  4 | 0, 1, 2,  7,  14,  28,   45,   73,   105, ...
  5 | 0, 1, 3, 10,  28,  65,  132,  242,   412, ...
  6 | 0, 1, 3, 14,  45, 132,  316,  693,  1349, ...
  7 | 0, 1, 4, 19,  73, 242,  693, 1742,  3927, ...
  8 | 0, 1, 4, 24, 105, 412, 1349, 3927, 10079, ...
  ...
		

Crossrefs

Main diagonal is A119857.
Antidiagonal sums are A122086.
The equivalent array for labeled nodes is A072590.

Programs

  • PARI
    EulerXY(A)={my(j=serprec(A,x)); exp(sum(i=1, j, 1/i * subst(subst(A + x * O(x^(j\i)), x, x^i), y, y^i)))}
    R(n)={my(A=O(x)); for(j=1, 2*n, A = if(j%2, 1, y)*x*EulerXY(A)); A};
    P(n)={my(r1=R(n), r2=x*EulerXY(r1), s=r1+r2-r1*r2); Vec(1 + s)}
    { my(A=P(10)); for(n=0, #A\2, for(k=0, #A\2, print1(polcoef(A[n+k+1], k), ", ")); print) }

A122085 Triangle read by rows: T(n,k) = number of unlabeled free bicolored trees with n nodes (n >= 1) and k (1 <= k <= n-1, except k=0 or 1 if n=1, k=1 if n=2) nodes of one color and n-k nodes of the other color (the colors are not interchangeable).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 7, 7, 3, 1, 1, 3, 10, 14, 10, 3, 1, 1, 4, 14, 28, 28, 14, 4, 1, 1, 4, 19, 45, 65, 45, 19, 4, 1, 1, 5, 24, 73, 132, 132, 73, 24, 5, 1, 1, 5, 30, 105, 242, 316, 242, 105, 30, 5, 1, 1, 6, 37, 152, 412, 693, 693, 412, 152
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2006

Keywords

Examples

			K M N gives the number N of unlabeled free bicolored trees with K nodes of one color and M nodes of the other color.
0 1 1
1 0 1
Total( 1) = 2
1 1 1
Total( 2) = 1
1 2 1
2 1 1
Total( 3) = 2
1 3 1
2 2 1
3 1 1
Total( 4) = 3
1 4 1
2 3 2
3 2 2
4 1 1
Total( 5) = 6
1 5 1
2 4 2
3 3 4
4 2 2
5 1 1
Total( 6) = 10
.
From _Andrew Howroyd_, Nov 02 2019: (Start)
Triangle for n >= 2, 1 <= k < n:
   2 | 1;
   3 | 1, 1;
   4 | 1, 1,  1;
   5 | 1, 2,  2,   1;
   6 | 1, 2,  4,   2,   1;
   7 | 1, 3,  7,   7,   3,   1;
   8 | 1, 3, 10,  14,  10,   3,   1;
   9 | 1, 4, 14,  28,  28,  14,   4,   1;
  10 | 1, 4, 19,  45,  65,  45,  19,   4,  1;
  11 | 1, 5, 24,  73, 132, 132,  73,  24,  5, 1;
  12 | 1, 5, 30, 105, 242, 316, 242, 105, 30, 5, 1;
  ...
(End)
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.

Crossrefs

Row sums give A122086.
Cf. A329054 (regular array with same data).

A329053 Number of bicolored acyclic graphs on n unlabeled nodes.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 65, 134, 280, 598, 1300, 2884, 6516, 15008, 35147, 83680, 202139, 494982, 1226753, 3074146, 7779561, 19863702, 51125018, 132541616, 345867101, 907922596, 2396276355, 6355845398, 16934718359, 45309972502, 121697068925, 328029259192
Offset: 0

Views

Author

Andrew Howroyd, Nov 02 2019

Keywords

Comments

The two color classes are not interchangeable. Adjacent nodes cannot have the same color.

Crossrefs

Antidiagonal sums of A329052.
Cf. A122086.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={concat([1], EulerT(Vec(2*TreeGf(n) - TreeGf(n)^2)))}

Formula

Euler transform of A122086.
Showing 1-4 of 4 results.