cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A321155 Regular triangle where T(n,k) is the number of non-isomorphic connected multiset partitions of weight n with density -1 <= k < n-2.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 6, 6, 4, 1, 10, 14, 11, 4, 1, 22, 38, 38, 20, 6, 1, 42, 94, 111, 72, 28, 6, 1, 94, 250, 348, 278, 138, 42, 8, 1, 203, 648, 1044, 992, 596, 226, 56, 8, 1, 470, 1728, 3192, 3538, 2536, 1192, 370, 76, 10, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2018

Keywords

Comments

The density of a multiset partition of weight n with e parts and v vertices is n - e - v. The weight of a multiset partition is the sum of sizes of its parts.

Examples

			Triangle begins:
    1
    2    1
    3    2    1
    6    6    4    1
   10   14   11    4    1
   22   38   38   20    6    1
   42   94  111   72   28    6    1
   94  250  348  278  138   42    8    1
  203  648 1044  992  596  226   56    8    1
  470 1728 3192 3538 2536 1192  370   76   10    1
Non-isomorphic representatives of the connected multiset partitions counted in row 5:
{1,2,3,4,5}         {1,2,3,4,4}       {1,2,2,3,3}     {1,1,2,2,2}   {1,1,1,1,1}
{1,4},{2,3,4}       {1,2},{2,3,3}     {1,2,3,3,3}     {1,2,2,2,2}
{4},{1,2,3,4}       {1,3},{2,3,3}     {1,1},{1,2,2}   {1},{1,1,1,1}
{2},{1,3},{2,3}     {2},{1,2,3,3}     {1},{1,2,2,2}   {1,1},{1,1,1}
{2},{3},{1,2,3}     {2,3},{1,2,3}     {1,2},{1,2,2}
{3},{1,3},{2,3}     {3},{1,2,3,3}     {1,2},{2,2,2}
{3},{3},{1,2,3}     {3,3},{1,2,3}     {2},{1,1,2,2}
{1},{2},{2},{1,2}   {1},{1},{1,2,2}   {2},{1,2,2,2}
{2},{2},{2},{1,2}   {1},{1,2},{2,2}   {2,2},{1,2,2}
{1},{1},{1},{1},{1} {1},{2},{1,2,2}   {1},{1},{1,1,1}
                    {2},{1,2},{1,2}   {1},{1,1},{1,1}
                    {2},{1,2},{2,2}
                    {2},{2},{1,2,2}
                    {1},{1},{1},{1,1}
		

Crossrefs

First column is A125702. Row sums are A007718.

A245883 Number of distinct chromatic polynomials among all connected graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 5, 14, 50, 231, 1650, 21121, 584432
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Aug 05 2014

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic polynomial is given by chi_G(x) = Sum_p (x)k, where the sum is over all stable partitions of G, k is the length (number of blocks) of p, and (x)_k is the falling factorial x(x-1)(x-2)...(x-k+1). - _Gus Wiseman, Nov 24 2018

Examples

			From _Gus Wiseman_, Nov 24 2018: (Start)
The a(4) = 5 chromatic polynomials:
  -6x + 11x^2 - 6x^3 + x^4
  -4x +  8x^2 - 5x^3 + x^4
  -2x +  5x^2 - 4x^3 + x^4
  -3x +  6x^2 - 4x^3 + x^4
   -x +  3x^2 - 3x^3 + x^4
(End)
		

Crossrefs

Cf. A229048 (simple graphs, including disconnected ones, with unique chromatic polynomials).

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    falling[x_,k_]:=Product[(x-i),{i,0,k-1}];
    chromPoly[g_]:=Expand[Sum[falling[x,Length[stn]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}]];
    simpleSpans[n_]:=simpleSpans[n]=If[n==0,{{}},Union@@Table[If[#=={},Union[ine,{{n}}],Union[Complement[ine,List/@#],{#,n}&/@#]]&/@Subsets[Range[n-1]],{ine,simpleSpans[n-1]}]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Union[chromPoly/@Select[simpleSpans[n],Length[csm[#]]==1&]]],{n,5}] (* Gus Wiseman, Nov 24 2018 *)

A321911 Number of distinct chromatic symmetric functions of simple connected graphs with n vertices.

Original entry on oeis.org

1, 1, 2, 6, 20, 103, 759
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2018

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions p of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895).

Examples

			The a(4) = 6 connected chromatic symmetric functions (m is the augmented monomial symmetric function basis):
                    m(1111)
           m(211) + m(1111)
          2m(211) + m(1111)
  m(22) + 2m(211) + m(1111)
  m(22) + 3m(211) + m(1111)
  m(31) + 3m(211) + m(1111)
		

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}];
    simpleSpans[n_]:=simpleSpans[n]=If[n==0,{{}},Union@@Table[If[#=={},Union[ine,{{n}}],Union[Complement[ine,List/@#],{#,n}&/@#]]&/@Subsets[Range[n-1]],{ine,simpleSpans[n-1]}]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Union[chromSF/@Select[simpleSpans[n],Length[csm[#]]==1&]]],{n,6}]

A122086 Number of unlabeled free bicolored trees with n nodes (the colors are not interchangeable).

Original entry on oeis.org

2, 1, 2, 3, 6, 10, 22, 42, 94, 203, 470, 1082, 2602, 6270, 15482, 38525, 97258, 247448, 635910, 1645411, 4289010, 11245670, 29656148, 78595028, 209273780, 559574414, 1502130920, 4046853091, 10939133170, 29661655793
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2006

Keywords

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.

Crossrefs

Row sums of A122085.
Antidiagonal sums of A329054.
Same as A125702 except for n = 1.

Programs

  • PARI
    \\ here TreeGf is A000081 as g.f.
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={Vec(2*TreeGf(n) - TreeGf(n)^2)} \\ Andrew Howroyd, Nov 02 2019

Formula

For n even, a(n) = 2*A000055(n) - A000081(n/2), for n odd, a(n) = 2*A000055(n).
G.f.: 2*f(x) - f(x)^2 where f(x) is the g.f. of A000081. - Andrew Howroyd, Nov 02 2019

Extensions

A125699 Table, T(n,k) is the number of connected categories with n morphisms and k objects.

Original entry on oeis.org

1, 2, 7, 1, 35, 6, 228, 28, 2, 2237, 159, 11, 31559, 1075, 77, 3, 1668997, 9389, 497, 24
Offset: 1

Views

Author

Keywords

Comments

Connected in the sense that if the morphism direction and composition is ignored, resulting in a multigraph, that multigraph is connected.

Examples

			The table starts:
        1;
        2;
        7,    1;
       35,    6;
      228,   28,   2;
     2237,  159,  11;
    31559, 1075,  77,  3;
  1668997, 9389, 497, 24;
  ...
		

Crossrefs

Cf. A125696, A125698 (row sums), A110654 (row lengths), A058129 (column 1), A125700 (diagonal sums), A125702 (T(2n-1, n)).

Extensions

a(14)-a(20) from Ben Spitz, Sep 02 2023
Showing 1-5 of 5 results.