cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A329054 Array read by antidiagonals: T(n,m) is the number of unlabeled bicolored trees with n nodes of one color and m of the other.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 4, 2, 1, 0, 0, 1, 3, 7, 7, 3, 1, 0, 0, 1, 3, 10, 14, 10, 3, 1, 0, 0, 1, 4, 14, 28, 28, 14, 4, 1, 0, 0, 1, 4, 19, 45, 65, 45, 19, 4, 1, 0, 0, 1, 5, 24, 73, 132, 132, 73, 24, 5, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Nov 02 2019

Keywords

Comments

The two color classes are not interchangeable. Adjacent nodes cannot have the same color.
Essentially the same data as given in the irregular triangle A122085, but including complete columns for n = 0 and m = 0 to give a regular array.

Examples

			Array begins:
===================================================
n\m | 0  1  2   3    4    5     6     7      8
----+----------------------------------------------
  0 | 1, 1, 0,  0,   0,   0,    0,    0,     0, ...
  1 | 1, 1, 1,  1,   1,   1,    1,    1,     1, ...
  2 | 0, 1, 1,  2,   2,   3,    3,    4,     4, ...
  3 | 0, 1, 2,  4,   7,  10,   14,   19,    24, ...
  4 | 0, 1, 2,  7,  14,  28,   45,   73,   105, ...
  5 | 0, 1, 3, 10,  28,  65,  132,  242,   412, ...
  6 | 0, 1, 3, 14,  45, 132,  316,  693,  1349, ...
  7 | 0, 1, 4, 19,  73, 242,  693, 1742,  3927, ...
  8 | 0, 1, 4, 24, 105, 412, 1349, 3927, 10079, ...
  ...
		

Crossrefs

Main diagonal is A119857.
Antidiagonal sums are A122086.
The equivalent array for labeled nodes is A072590.

Programs

  • PARI
    EulerXY(A)={my(j=serprec(A,x)); exp(sum(i=1, j, 1/i * subst(subst(A + x * O(x^(j\i)), x, x^i), y, y^i)))}
    R(n)={my(A=O(x)); for(j=1, 2*n, A = if(j%2, 1, y)*x*EulerXY(A)); A};
    P(n)={my(r1=R(n), r2=x*EulerXY(r1), s=r1+r2-r1*r2); Vec(1 + s)}
    { my(A=P(10)); for(n=0, #A\2, for(k=0, #A\2, print1(polcoef(A[n+k+1], k), ", ")); print) }

A119856 Number of equicolorable (unrooted) trees on 2n nodes.

Original entry on oeis.org

1, 1, 3, 9, 37, 168, 895, 5097, 30983, 196096, 1283552, 8621364, 59176966, 413613891, 2936303012, 21128390679, 153841228779, 1131941424480, 8406680733066, 62958726953945, 475074493277317, 3609405128045162, 27593870865196624, 212159118489924538, 1639760091688265416
Offset: 1

Views

Author

N. J. A. Sloane, Aug 04 2006

Keywords

Comments

For precise definition, recurrence and asymptotics see the Pippenger reference.

Crossrefs

Programs

  • PARI
    \\ R is b.g.f of rooted trees x nodes, y in one part
    R(n)={my(A=O(x)); for(j=1, 2*n, A = if(j%2,1,y)*x*exp(sum(i=1, j, 1/i * subst(subst(A + x * O(x^(j\i)), x, x^i), y, y^i)))); A};
    seq(n)={my(A=Pol(R(n))); my(r(x,y)=substvec(A, ['x,'y], [x,y/x])); Vec(polcoeff((r(x,y/x) + r(y/x,x) - r(x,y/x)*r(y/x,x)), 0) + O(y*y^n) + r(y,y))/2} \\ Andrew Howroyd, May 23 2018

Formula

a(n) = (A000081(n) + A119857(n))/2. - Andrew Howroyd, May 21 2018

Extensions

a(8)-a(9) from John P. McSorley, Aug 08 2017
Terms a(10) and beyond from Andrew Howroyd, May 21 2018

A119855 Number of equicolorable rooted trees on 2n nodes.

Original entry on oeis.org

1, 2, 9, 44, 249, 1506, 9687, 64803, 447666, 3169566, 22897260, 168168164, 1252391041, 9437809359, 71850420813, 551876468717, 4272100488830, 33299732401378, 261165251593743, 2059638535690473, 16324255856903830, 129969379170062142, 1039056925387672998
Offset: 1

Views

Author

N. J. A. Sloane, Aug 04 2006

Keywords

Comments

For precise definition, recurrence and asymptotics see the Pippenger reference.
An equicolorable tree is a tree which can be colored with two colors with adjacent nodes having different colors and there being an equal number of nodes of each color. - Andrew Howroyd, May 21 2018

References

  • N. Pippenger, Enumeration of equicolorable trees, SIAM J. Discrete Math., 14 (2001), 93-115.

Crossrefs

Programs

  • PARI
    \\ R is b.g.f of rooted trees x nodes, y in one part
    R(n)={my(A=O(x)); for(j=1, 2*n, A = if(j%2,1,y)*x*exp(sum(i=1, j, 1/i * subst(subst(A + x * O(x^(j\i)), x, x^i), y, y^i)))); A};
    seq(n)={my(A=Pol(R(n))); my(r(x,y)=substvec(A, ['x,'y], [x,y/x])); Vec(polcoeff(r(x, y/x), 0) + O(y*y^n))} \\ Andrew Howroyd, May 23 2018

Extensions

Terms a(8) and beyond from Andrew Howroyd, May 21 2018
Showing 1-3 of 3 results.