cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A072590 Table T(n,k) giving number of spanning trees in complete bipartite graph K(n,k), read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 32, 81, 32, 1, 1, 80, 432, 432, 80, 1, 1, 192, 2025, 4096, 2025, 192, 1, 1, 448, 8748, 32000, 32000, 8748, 448, 1, 1, 1024, 35721, 221184, 390625, 221184, 35721, 1024, 1, 1, 2304, 139968, 1404928, 4050000, 4050000
Offset: 1

Views

Author

Michael Somos, Jun 23 2002

Keywords

Examples

			From _Andrew Howroyd_, Oct 29 2019: (Start)
Array begins:
============================================================
n\k | 1   2     3       4        5         6           7
----+-------------------------------------------------------
  1 | 1   1     1       1        1         1           1 ...
  2 | 1   4    12      32       80       192         448 ...
  3 | 1  12    81     432     2025      8748       35721 ...
  4 | 1  32   432    4096    32000    221184     1404928 ...
  5 | 1  80  2025   32000   390625   4050000    37515625 ...
  6 | 1 192  8748  221184  4050000  60466176   784147392 ...
  7 | 1 448 35721 1404928 37515625 784147392 13841287201 ...
  ...
(End)
		

References

  • J. W. Moon, Counting Labeled Trees, Issue 1 of Canadian mathematical monographs, Canadian Mathematical Congress, 1970.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Exercise 5.66.

Crossrefs

Columns 2..3 are A001787, A069996.
Main diagonal is A068087.
Antidiagonal sums are A132609.

Programs

  • Mathematica
    t[n_, k_] := n^(k-1) * k^(n-1); Table[ t[n-k+1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 21 2013 *)
  • PARI
    {T(n, k) = if( n<1 || k<1, 0, n^(k-1) * k^(n-1))}

Formula

T(n, k) = n^(k-1) * k^(n-1).
E.g.f.: A(x,y) - 1, where: A(x,y) = exp( x*exp( y*A(x,y) ) ) = Sum_{n>=0} Sum_{k=0..n} (n-k)^k * (k+1)^(n-k-1) * x^(n-k)/(n-k)! * y^k/k!. - Paul D. Hanna, Jan 22 2019

Extensions

Scoins reference from Philippe Deléham, Dec 22 2003

A132608 Self-convolution square-root of A062817 (offset 2); thus g.f. A(x) satisfies: A(x)^2 = Sum_{n>=2} A062817(n)*x^n, where A062817(n) = Sum_{k=0..n} (n-k)^k*k^(n-k).

Original entry on oeis.org

1, 2, 9, 58, 469, 4530, 50491, 634790, 8861043, 135750454, 2262315973, 40726646802, 787471241647, 16275700505510, 358103286781293, 8357593147404346, 206241859929682177, 5366082228239257410
Offset: 1

Views

Author

Paul D. Hanna, Aug 26 2007

Keywords

Examples

			A(x) = x + 2x^2 + 9x^3 + 58x^4 + 469x^5 + 4530x^6 +...+ a(n)*x^n +...
A(x)^2 = x^2 + 4x^3 + 22x^4 + 152x^5 + 1251x^6 +...+ A062817(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(Sum[x^(k-2) * Sum[(k-j)^j * j^(k-j), {j, 0, k}], {k, 1, 2*nmax}])^(1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 22 2021 *)
  • PARI
    {a(n)=polcoeff((sum(m=2,n+1,sum(k=0,m,(m-k)^k*k^(m-k))*x^m +x*O(x^(n+1))))^(1/2),n)}

Formula

a(n) ~ exp(1) * sqrt(2*Pi/3) * n^(n + 3/2) / 2^(n+3). - Vaclav Kotesovec, Nov 22 2021

A381726 Number of minimum connected dominating sets in the n X n black bishop graph.

Original entry on oeis.org

1, 2, 1, 1, 2, 13, 83, 513, 4052, 41197, 462069, 5597201, 76094134, 1153902701, 18981358311, 336018968449, 6413439874792, 131386321421901, 2867812411156521, 66426533670738769, 1629082910078009770, 42175861619149917325, 1148999152027728530363, 32856688248674995989889
Offset: 1

Views

Author

Eric W. Weisstein, Mar 05 2025

Keywords

Crossrefs

Cf. A381727 (white bishop).

Programs

  • Mathematica
    Join[{1, 2}, Table[Sum[(2 k - 1)^(n - 2 k - 1) (n - 2 k)^(2 (k - 1)), {k, Floor[(n - 1)/2]}], {n, 3, 20}]] (* Eric W. Weisstein, Mar 22 2025 *)
  • PARI
    \\ B(n,k) is A072590.
    B(n,k) = n^(k-1) * k^(n-1)
    a(n) = if(n <= 2, n, sum(k=1, (n-1)\2, B(n-2*k, 2*k-1))) \\ Andrew Howroyd, Mar 20 2025

Formula

a(n) = Sum_{k=1..floor((n-1)/2)} A072590(n-2*k, 2*k-1) for n >= 3. - Andrew Howroyd, Mar 20 2025

Extensions

a(10) onwards from Andrew Howroyd, Mar 20 2025

A381727 Number of minimum connected dominating sets in the n X n white bishop graph.

Original entry on oeis.org

2, 4, 1, 4, 13, 64, 513, 4480, 41197, 444416, 5597201, 77253632, 1153902701, 18870222848, 336018968449, 6428081455104, 131386321421901, 2865273888571392, 66426533670738769, 1629643279560867840, 42175861619149917325, 1148845693539400548352, 32856688248674995989889
Offset: 2

Views

Author

Eric W. Weisstein, Mar 05 2025

Keywords

Crossrefs

Cf. A381726 (black bishop).

Programs

  • Mathematica
    Join[{2, 4}, Table[Sum[(2 k)^(n - 2 k - 2) (n - 2 k - 1)^(2 k - 1), {k, Floor[n/2] - 1}], {n, 4, 20}]] (* Eric W. Weisstein, Mar 22 2025 *)
  • PARI
    \\ B(n, k) is A072590.
    B(n,k) = n^(k-1) * k^(n-1)
    a(n) = if(n <= 3, 2*n-2, sum(k=1, n\2-1, B(n-1-2*k, 2*k))) \\ Andrew Howroyd, Mar 20 2025

Formula

a(n) = Sum_{k=1..floor(n\2)-1} A072590(n-1-2*k, 2*k) for n >= 4. - Andrew Howroyd, Mar 20 2025

Extensions

a(10) onwards from Andrew Howroyd, Mar 20 2025
Showing 1-4 of 4 results.