cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A134095 Expansion of e.g.f. A(x) = 1/(1 - LambertW(-x)^2).

Original entry on oeis.org

1, 0, 2, 12, 120, 1480, 22320, 396564, 8118656, 188185680, 4871980800, 139342178140, 4363291266048, 148470651659928, 5455056815237120, 215238256785814500, 9077047768435752960, 407449611073696325536, 19396232794530856894464, 976025303642559490903980
Offset: 0

Views

Author

Paul D. Hanna, Oct 11 2007

Keywords

Comments

E.g.f. equals the square of the e.g.f. of A060435, where A060435(n) = number of functions f: {1,2,...,n} -> {1,2,...,n} with even cycles only.

Examples

			E.g.f.: A(x) = 1 + 0*x + 2*x^2/2! + 12*x^3/3! + 120*x^4/4! + 1480*x^5/5! + ...
The formula A(x) = 1/(1 - LambertW(-x)^2) is illustrated by:
A(x) = 1/(1 - (x + x^2 + 3^2*x^3/3! + 4^3*x^4/4! + 5^4*x^5/5! + ...)^2).
		

Crossrefs

Cf. A060435; indirectly related: A062817, A132608.

Programs

  • Maple
    seq(simplify(GAMMA(n+1,-n)*(-exp(-1))^n),n=0..20); # Vladeta Jovovic, Oct 17 2007
  • Mathematica
    CoefficientList[Series[1/(1-LambertW[-x]^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
    a[x0_] := x D[1/x Exp[x], {x, n}] x^n Exp[-x] /. x->x0
    Table[a[n], {n, 0, 20}] (* Gerry Martens, May 05 2016 *)
  • PARI
    {a(n)=sum(k=0,n,(n-k)^k*k^(n-k)*binomial(n,k))}
    
  • PARI
    /* Generated by e.g.f. 1/(1 - LambertW(-x)^2 ): */
    {a(n)=my(LambertW=-x*sum(k=0,n,(-x)^k*(k+1)^(k-1)/k!) +x*O(x^n)); n!*polcoeff(1/(1-subst(LambertW,x,-x)^2),n)}

Formula

a(n) = Sum_{k=0..n} C(n,k) * (n-k)^k * k^(n-k).
a(n) = n!*Sum_{k=0..n} (-1)^(n-k)*n^k/k!. - Vladeta Jovovic, Oct 17 2007
a(n) ~ n^n/2. - Vaclav Kotesovec, Nov 27 2012, simplified Nov 22 2021
a(n) = n! * [x^n] exp(n*x)/(1 + x). - Ilya Gutkovskiy, Sep 18 2018
a(n) = (-1)^n*exp(-n)*Integral_{x=-n..oo} x^n*exp(-x) dx. - Thomas Scheuerle, Jan 29 2024

A132609 Antidiagonal sum of table A072590(n,k) = n^(k-1)*k^(n-1) for n>=1.

Original entry on oeis.org

1, 2, 6, 26, 147, 1026, 8532, 82394, 906485, 11194402, 153347766, 2307805402, 37851581159, 672037936898, 12841521329896, 262772642843802, 5733086299727913, 132853067341477538, 3258726189638877610
Offset: 1

Views

Author

Paul D. Hanna, Aug 26 2007

Keywords

Comments

A072590(n,k) equals the number of spanning trees in complete bipartite graph K(n,k).
Also the number of minimum connected dominating sets of the (n+1)-triangular honeycomb bishop graph. - Eric W. Weisstein, Jun 03 2024 and Mar 05 2025

Crossrefs

Programs

  • Mathematica
    Table[Sum[(n - k + 1)^(k - 1) k^(n - k), {k, n}], {n, 30}] (* Harvey P. Dale, Jun 26 2021 *)
  • PARI
    a(n)=sum(k=1,n,(n-k+1)^(k-1)*k^(n-k))

Formula

a(n) = Sum_{k=1..n} (n-k+1)^(k-1)*k^(n-k) for n>=1.
a(n) ~ sqrt(2*Pi/3) * exp(1) * n^(n - 1/2) / 2^n. - Vaclav Kotesovec, Nov 22 2021
Showing 1-2 of 2 results.