A072590
Table T(n,k) giving number of spanning trees in complete bipartite graph K(n,k), read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 32, 81, 32, 1, 1, 80, 432, 432, 80, 1, 1, 192, 2025, 4096, 2025, 192, 1, 1, 448, 8748, 32000, 32000, 8748, 448, 1, 1, 1024, 35721, 221184, 390625, 221184, 35721, 1024, 1, 1, 2304, 139968, 1404928, 4050000, 4050000
Offset: 1
From _Andrew Howroyd_, Oct 29 2019: (Start)
Array begins:
============================================================
n\k | 1 2 3 4 5 6 7
----+-------------------------------------------------------
1 | 1 1 1 1 1 1 1 ...
2 | 1 4 12 32 80 192 448 ...
3 | 1 12 81 432 2025 8748 35721 ...
4 | 1 32 432 4096 32000 221184 1404928 ...
5 | 1 80 2025 32000 390625 4050000 37515625 ...
6 | 1 192 8748 221184 4050000 60466176 784147392 ...
7 | 1 448 35721 1404928 37515625 784147392 13841287201 ...
...
(End)
- J. W. Moon, Counting Labeled Trees, Issue 1 of Canadian mathematical monographs, Canadian Mathematical Congress, 1970.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Exercise 5.66.
- T. D. Noe, Antidiagonals d=1..50, flattened
- Taylor Brysiewicz and Aida Maraj, Lawrence Lifts, Matroids, and Maximum Likelihood Degrees, arXiv:2310.13064 [math.CO], 2023. See p. 13.
- H. I. Scoins, The number of trees with nodes of alternate parity, Proc. Cambridge Philos. Soc. 58 (1962) 12-16.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Eric Weisstein's World of Mathematics, Spanning Tree
-
t[n_, k_] := n^(k-1) * k^(n-1); Table[ t[n-k+1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 21 2013 *)
-
{T(n, k) = if( n<1 || k<1, 0, n^(k-1) * k^(n-1))}
A328888
Array read by antidiagonals: T(n,m) is the number of acyclic edge covers of the complete bipartite graph K_{n,m}.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 18, 18, 1, 1, 46, 132, 46, 1, 1, 110, 696, 696, 110, 1, 1, 254, 3150, 6728, 3150, 254, 1, 1, 574, 13086, 51760, 51760, 13086, 574, 1, 1, 1278, 51492, 348048, 632970, 348048, 51492, 1278, 1, 1, 2814, 195180, 2143736, 6466980, 6466980, 2143736, 195180, 2814, 1
Offset: 1
Array begins:
=============================================================
n\m | 1 2 3 4 5 6 7
----+--------------------------------------------------------
1 | 1 1 1 1 1 1 1 ...
2 | 1 6 18 46 110 254 574 ...
3 | 1 18 132 696 3150 13086 51492 ...
4 | 1 46 696 6728 51760 348048 2143736 ...
5 | 1 110 3150 51760 632970 6466980 58620030 ...
6 | 1 254 13086 348048 6466980 96208632 1231832364 ...
7 | 1 574 51492 2143736 58620030 1231832364 21634786586 ...
...
-
T(n, m=n)={my(M=matrix(n, m), N=matrix(n, m, n, m, n^(m-1) * m^(n-1))); for(n=1, n, for(m=1, m, M[n,m] = N[n,m] + sum(i=1, n-1, sum(j=1, m-1, binomial(n-1, i-1)*binomial(m, j)*N[i,j]*M[n-i, m-j])))); M}
{ my(A=T(7)); for(i=1, #A, print(A[i,])) }
A297077
Number of distinct row and column sums for n X n (0, 1)-matrices.
Original entry on oeis.org
1, 2, 15, 328, 16145, 1475856, 219682183, 48658878080, 15047189968833, 6199170628499200, 3283463201858585471, 2174417430787021427712, 1760550428764505109190225, 1711145965399957937819322368, 1966168979042910307305159432375, 2636533865690624357354875499216896
Offset: 0
For n = 3, both of the following 3 X 3 (0,1)-matrices have identical row and column sums:
[1 0 1] [1 1 0]
[0 1 0] and [0 1 0]
[0 1 0] [0 0 1]
have row sums of [2 1 1] and column sums of [1 2 1].
So ([2 1 1], [1 2 1]) is one of the 328 possible row/column sums for a 3 X 3 matrix.
- Andrew Howroyd, Table of n, a(n) for n = 0..100
- Mathematics Stack Exchange, Spanning forests of bipartite graphs and distinct row/column sums of binary matrices
- Lars Nagel & Tim Süß, Computing the Probability for Data Loss in Two-Dimensional Parity RAIDs, 2017 13th European Dependable Computing Conference (EDCC), 58-65.
- Rebecca J. Stones, Computing the number of h-edge spanning forests in complete bipartite graphs, Discrete Mathematics & Theoretical Computer Science, vol. 16, no. 1, pp. 313-326, 2014.
Cf.
A048163 gives the number of row/column sums that uniquely identify a matrix.
-
{1}~Join~Array[Length@ Union@ Map[Total /@ {Transpose@ #, #} &, Tuples[{0, 1}, {#, #}]] &, 4] (* Michael De Vlieger, Jan 11 2018 *)
A327913
Array read by antidiagonals: T(n,m) is the number of distinct unordered row and column sums of n X m binary matrices.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 22, 34, 22, 6, 1, 1, 7, 34, 76, 76, 34, 7, 1, 1, 8, 50, 152, 221, 152, 50, 8, 1, 1, 9, 70, 280, 557, 557, 280, 70, 9, 1, 1, 10, 95, 482, 1264, 1736, 1264, 482, 95, 10, 1, 1, 11, 125, 787, 2630, 4766, 4766, 2630, 787, 125, 11, 1
Offset: 0
Array begins:
=============================================
n\m | 0 1 2 3 4 5 6 7
----+----------------------------------------
0 | 1 1 1 1 1 1 1 1 ...
1 | 1 2 3 4 5 6 7 8 ...
2 | 1 3 7 13 22 34 50 70 ...
3 | 1 4 13 34 76 152 280 482 ...
4 | 1 5 22 76 221 557 1264 2630 ...
5 | 1 6 34 152 557 1736 4766 11812 ...
6 | 1 7 50 280 1264 4766 15584 45356 ...
7 | 1 8 70 482 2630 11812 45356 153228 ...
...
T(2,2) = 7. The following 7 matrices each have different row/column sums.
[0 0] [0 0] [0 1] [0 0] [0 1] [0 1] [1 1]
[0 0] [0 1] [1 0] [1 1] [0 1] [1 1] [1 1]
Cf.
A028657 (nonequivalent binary n X m matrices).
-
T(n,m)={local(Cache=Map());
my(F(b, c, t, w)=my(hk=Vecsmall([b, c, t, w]), z);
if(!mapisdefined(Cache, hk, &z),
z = if(w&&c, sum(i=0, b, sum(j=ceil((t+i)/w), min(t+i, c), self()(i, j, t+i-j, w-1))), !t);
mapput(Cache, hk, z)); z);
F(n, n, 0, m)
}
-
# After PARI implementation.
from functools import cache
@cache
def F(b, c, t, w):
if w == 0:
return 1 if t == 0 else 0
return sum(
sum(
F(i, j, t + i - j, w - 1)
for j in range((t + i - 1) // w, min(t + i, c) + 1)
)
for i in range(b + 1)
)
A327913 = lambda n, m: F(n, n, 0, m)
for n in range(10):
print([A327913(n, m) for m in range(0, 8)]) # Peter Luschny, Apr 09 2021
A329052
Array read by antidiagonals: T(n,m) is the number of unlabeled bicolored acyclic graphs with n nodes of one color and m of the other.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 21, 15, 6, 1, 1, 7, 21, 38, 38, 21, 7, 1, 1, 8, 28, 62, 82, 62, 28, 8, 1, 1, 9, 36, 95, 158, 158, 95, 36, 9, 1, 1, 10, 45, 138, 278, 356, 278, 138, 45, 10, 1, 1, 11, 55, 192, 459, 724, 724, 459, 192, 55, 11, 1
Offset: 0
Array begins:
=======================================================
n\m | 0 1 2 3 4 5 6 7 8
----+--------------------------------------------------
0 | 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1 | 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
2 | 1, 3, 6, 10, 15, 21, 28, 36, 45, ...
3 | 1, 4, 10, 21, 38, 62, 95, 138, 192, ...
4 | 1, 5, 15, 38, 82, 158, 278, 459, 716, ...
5 | 1, 6, 21, 62, 158, 356, 724, 1359, 2388, ...
6 | 1, 7, 28, 95, 278, 724, 1690, 3612, 7143, ...
7 | 1, 8, 36, 138, 459, 1359, 3612, 8731, 19404, ...
8 | 1, 9, 45, 192, 716, 2388, 7143, 19404, 48213, ...
...
The equivalent array for labeled nodes is
A328887.
-
EulerXY(A)={my(j=serprec(A,x)); exp(sum(i=1, j, 1/i * subst(subst(A + x * O(x^(j\i)), x, x^i), y, y^i)))}
R(n)={my(A=O(x)); for(j=1, 2*n, A = if(j%2, 1, y)*x*EulerXY(A)); A};
P(n)={my(r1=R(n), r2=x*EulerXY(r1), s=r1+r2-r1*r2); Vec(EulerXY(s))}
{ my(A=P(10)); for(n=0, #A\2, for(k=0, #A\2, print1(polcoef(A[n+k+1], k), ", ")); print) }
Showing 1-5 of 5 results.
Comments