cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A161628 E.g.f.: A(x,y) = LambertW(x*y*exp(x))/(x*y*exp(x)), as a triangle of coefficients T(n,k) = [x^n*y^k/n! ] A(x,y), read by rows.

Original entry on oeis.org

1, 0, -1, 0, -2, 3, 0, -3, 18, -16, 0, -4, 72, -192, 125, 0, -5, 240, -1440, 2500, -1296, 0, -6, 720, -8640, 30000, -38880, 16807, 0, -7, 2016, -45360, 280000, -680400, 705894, -262144, 0, -8, 5376, -217728, 2240000, -9072000, 16941456, -14680064, 4782969
Offset: 0

Views

Author

Paul D. Hanna, Jun 15 2009, Jun 16 2009, Jun 17 2009

Keywords

Comments

The sum of row r of the triangle is (-1)^r (see A244119). - Stanislav Sykora, Jun 21 2014

Examples

			Triangle begins:
1;
0, -1;
0, -2, 3;
0, -3, 18, -16;
0, -4, 72, -192, 125;
0, -5, 240, -1440, 2500, -1296;
0, -6, 720, -8640, 30000, -38880, 16807;
0, -7, 2016, -45360, 280000, -680400, 705894, -262144;
0, -8, 5376, -217728, 2240000, -9072000, 16941456, -14680064, 4782969;
0, -9, 13824, -979776, 16128000, -102060000, 304946208, -462422016, 344373768, -100000000; ...
		

Crossrefs

Programs

  • Maple
    A161628 := (n, k) -> (-1)^k*binomial(n, k)*(k+1)^(k-1)*k^(n-k):
    seq(seq(A161628(n,k), k=0..n), n=0..8); # Peter Luschny, Jan 29 2023
  • Mathematica
    Join[{1}, Table[(-1)^k*Binomial[n, k]*(k + 1)^(k - 1)*k^(n - k), {n, 1, 10}, {k, 0, n}]] // Flatten (* G. C. Greubel, Nov 09 2017 *)
  • PARI
    {T(n,k)=(-1)^k*binomial(n,k)*(k+1)^(k-1)*k^(n-k)}
    
  • PARI
    {T(n,k)=local(A,LW=serreverse(x*exp(x+x*O(x^n))));A=subst(LW/x,x,x*y*exp(x));n!*polcoeff(polcoeff(A,n,x),k,y)}
    
  • PARI
    {T(n,k)=local(G=1+x);for(i=0,n,G=exp(x*y*exp(x*G+O(x^n))));n!*polcoeff(polcoeff(serreverse(x*G)/x,n,x),k,y)}

Formula

T(n,k) = (-1)^k*C(n,k)*(k+1)^(k-1)*k^(n-k).
E.g.f. satisfies: A(x,y) = exp(-x*y*exp(x)*A(x,y)).
E.g.f.: A(x,y) = Sum_{n>=0} (n+1)^(n-1) * (-x)^n*y^n*exp(n*x)/n!.
E.g.f.: A(x,y) = (1/x)*Series_Reversion[x*G(x,y)] where G(x,y) = exp(x*y*exp(x*G(x,y))) is the e.g.f. of A161552.
More generally, if G(x,y) = exp(p*x*y*exp(q*x)*G(x,y)),
where G(x,y)^m = Sum_{n>=0} g(n,m)*x^n/n!,
then g(n,m) = C(n,k)*p^k*q^(n-k) * m*(k+m)^(k-1) * k^(n-k)
and G(x,y) = LambertW(-p*x*y*exp(q*x))/(-p*x*y*exp(q*x)).

A161605 E.g.f. satisfies: A(x) = exp(x*exp(x*A(x)^3)).

Original entry on oeis.org

1, 1, 3, 28, 365, 6496, 147127, 4033408, 130058777, 4822981120, 202225551371, 9460961327104, 488602134968389, 27609977350868992, 1694576741234926655, 112258296102497099776, 7983577042683934226993, 606688287932557859356672
Offset: 0

Views

Author

Paul D. Hanna, Jun 14 2009

Keywords

Comments

More generally, if G(x) = exp(x*exp(x*G(x)^p)),
where G(x)^m = Sum_{n>=0} g(n,m)*x^n/n!,
then g(n,m) = Sum_{k=0..n} C(n,k) * m*(p*(n-k) + m)^(k-1) * k^(n-k).

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 28*x^3/3! + 365*x^4/4! +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[Binomial[n, k]*(3*(n - k) + 1)^(k - 1)*k^(n - k), {k, 0, n}], {n, 1, 50}]}] (* G. C. Greubel, Nov 18 2017 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*(3*(n-k)+1)^(k-1)*k^(n-k))}
    
  • PARI
    {a(n)=local(A=1+x);for(i=0,n,A=exp(x*exp(x*A^3+O(x^n))));n!*polcoeff(A,n,x)}

Formula

a(n) = Sum_{k=0..n} C(n,k) * (3*(n-k) + 1)^(k-1) * k^(n-k).
Showing 1-2 of 2 results.