cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A068087 a(n) = n^(2*n-2).

Original entry on oeis.org

1, 4, 81, 4096, 390625, 60466176, 13841287201, 4398046511104, 1853020188851841, 1000000000000000000, 672749994932560009201, 552061438912436417593344, 542800770374370512771595361, 629983141281877223603213172736, 852226929923929274082183837890625
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 06 2002

Keywords

Comments

Number of spanning trees in the bipartite graph K(n,n). In general the number of spanning trees in the bipartite graph K(m,n) is m^(n-1) * n^(m-1).

Crossrefs

a(n) = A000169(n)^2.

Programs

A263190 G.f. satisfies: [x^(n-1)] A(x)^(n^2) = (n!)^2 for n>=1.

Original entry on oeis.org

1, 1, 0, 1, 46, 1723, 81104, 4793304, 349869074, 31080492631, 3318717525832, 421195540320465, 62871475566985208, 10927921934497456588, 2191068343727736627744, 502384409006686040020572, 130687814451798554601790746, 38294333521028379285810681487, 12557951067433973525611840784048, 4581888866092825667058378205370595
Offset: 0

Views

Author

Paul D. Hanna, Oct 12 2015

Keywords

Comments

CONJECTURES.
(1) Limit a(n)/(n!)^2 = 1/exp(1).
(2) There are no negative terms.
(3) ODD TERMS: It appears that for k>0, a(k) is odd iff k = 2*A003714(n)+1 for n>=0, where A003714 is the fibbinary numbers (integers whose binary representation contains no consecutive ones); this is true for at least the first 531 terms. [See also A171791 and A263075.]
Conjectures hold to at least a(1000). - Sean A. Irvine, Oct 21 2015

Examples

			G.f.: A(x) = 1 + x + x^3 + 46*x^4 + 1723*x^5 + 81104*x^6 + 4793304*x^7 +...
The coefficients in A(x)^(n^2) begin:
n=1: [1, 1, 0, 1, 46, 1723, 81104, 4793304, 349869074, ...];
n=2: [1, 4, 6, 8, 197, 7456, 345654, 20167888, 1458010566, ...];
n=3: [1, 9, 36, 93, 612, 19197, 866208, 49440834, 3515499819, ...];
n=4: [1, 16, 120, 576, 2796, 44656, 1803872, 99433344, ...];
n=5: [1, 25, 300, 2325, 14400, 130705, 3606800, 183492150, ...];
n=6: [1, 36, 630, 7176, 61821, 518400, 8260086, 332807184, ...];
n=7: [1, 49, 1176, 18473, 216482, 2154775, 25401600, 655445812, ...];
n=8: [1, 64, 2016, 41728, 642352, 8045248, 95405312, 1625702400, ...];
n=9: [1, 81, 3240, 85401, 1673946, 26315199, 360707040, 5266837404, 131681894400, ...]; ...
where the terms along the main diagonal begin:
[1, 4, 36, 576, 14400, 518400, 25401600, 1625702400, ..., (n!)^2, ...].
LOCATION OF ODD TERMS.
Note that odd terms a(n) occur at positions n starting with:
[0, 1, 3, 5, 9, 11, 17, 19, 21, 33, 35, 37, 41, 43, 65, 67, 69, 73, 75, 81, 83, 85, 129, 131, 133, 137, 139, 145, 147, 149, 161, 163, 165, 169, 171, 257, ...],
which seems to equal A118113, the even fibbinary numbers + 1, with an initial zero included.
		

Crossrefs

Programs

  • PARI
    {a(n) = local(A=[1, 1]); for(i=1, n+1, A=concat(A, 0); m=#A; A[m] = ( m!^2 - Vec(Ser(A)^(m^2))[m] )/m^2 ); A[n+1]}
    for(n=0, 20, print1(a(n), ", "))
Showing 1-2 of 2 results.