cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A002807 a(n) = Sum_{k=3..n} (k-1)!*C(n,k)/2.

Original entry on oeis.org

0, 0, 0, 1, 7, 37, 197, 1172, 8018, 62814, 556014, 5488059, 59740609, 710771275, 9174170011, 127661752406, 1904975488436, 30341995265036, 513771331467372, 9215499383109573, 174548332364311563, 3481204991988351553, 72920994844093191553, 1600596371590399671784
Offset: 0

Views

Author

Keywords

Comments

Number of cycles in the complete graph on n nodes K_{n}. - Erich Friedman
Number of equations that must be checked to verify reversibility of an n state Markov chain using the Kolmogorov criterion. - Qian Jiang (jiang1h(AT)uwindsor.ca), Jun 08 2009
Also the number of paths in the (n-1)-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017

References

  • E.P.C. Kao, An Introduction to Stochastic Processes, Duxbury Press, 1997, 209-210. [From Qian Jiang (jiang1h(AT)uwindsor.ca), Jun 08 2009]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A284947 (triangle of k-cycle counts in K_n). - Eric W. Weisstein, Apr 06 2017

Programs

  • Magma
    [&+[Factorial(k-1)*Binomial(n,k) div 2: k in [3..n]]: n in [3..30]]; // Vincenzo Librandi, Mar 06 2016
    
  • Mathematica
    Table[Sum[((k-1)!Binomial[n,k])/2,{k,3,n}],{n,0,25}] (* Harvey P. Dale, Jun 24 2011 *)
    a[n_] := n/4*(2*HypergeometricPFQ[{1, 1, 1 - n}, {2}, -1] - n - 1); a[0] = 0; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Oct 05 2012 *)
  • PARI
    a(n)=sum(k=3,n, (k-1)!*binomial(n,k)/2) \\ Charles R Greathouse IV, Feb 08 2017

Formula

E.g.f.: (-1/4)*exp(x)*(2*log(1-x)+2*x+x^2). - Vladeta Jovovic, Oct 26 2004
a(n) = (n-1)*(n-2)/2 + n*a(n-1) - (n-1)*a(n-2). - Vladeta Jovovic, Jan 22 2005
a(n) ~ exp(1)/2 * (n-1)! * (1 + 1/n + 2/n^2 + 5/n^3 + 15/n^4 + 52/n^5 + 203/n^6 + 877/n^7 + 4140/n^8 + 21147/n^9 + ...). Coefficients are the Bell numbers (A000110). - Vaclav Kotesovec, Mar 08 2016
For n>2, a(n) = Sum_{k=1..n-2} A000522(k-1)*A000217(k). - Vaclav Kotesovec, Mar 08 2016

A234616 Numbers of undirected cycles in the complete tripartite graph K_{n,n,n}.

Original entry on oeis.org

1, 63, 6705, 1960804, 1271288295, 1541975757831, 3135880743480163, 9904953891455450640, 45915662047529291081589, 299038026557168514632822455, 2642895689915240835222121682301, 30814273315381549790551229559722628
Offset: 1

Views

Author

Eric W. Weisstein, Dec 28 2013

Keywords

Crossrefs

Cf. A296546 (cycle polynomial coefficients of K_n,n,n).

Programs

  • Mathematica
    Table[(Sum[Binomial[n, k] Binomial[n, i + p] Binomial[n, j + p] Binomial[k, i] Binomial[k - i, j] (k - 1)! (i + p)! (j + p)! 2^(k - i - j) Binomial[p + i + j - 1, k - 1], {k, n}, {i, 0, k}, {j, 0, k - i}, {p, k - i - j, n}] + Sum[Binomial[n, k]^2 k! (k - 1)!, {k, 2, n}])/2 - n^2, {n, 10}] (* Eric W. Weisstein, May 26 2017 *)
    Table[(n^2 (HypergeometricPFQ[{1, 1, 1 - n, 1 - n}, {2}, 1] - 3) + Sum[2^(k - i - j) Binomial[k, i] Binomial[k - i, j] Binomial[n, k] Binomial[n, i + p] Binomial[n, j + p] Binomial[i + j + p - 1, k - 1] (k - 1)! (i + p)! (j + p)!, {k, n}, {i, 0, k}, {j, 0, k - i}, {p, k - i - j, n}])/2, {n, 10}] (* Eric W. Weisstein, May 25 2023 *)
  • PARI
    c(n,k,i,j,p) = {binomial(n,k)*binomial(n,i+p)*binomial(n,j+p)*binomial(k,i)*binomial(k-i,j)*(k-1)!*(i+p)!*(j+p)!*2^(k-i-j)*binomial(p+i+j-1,k-1)}
    a(n)={(sum(k=1,n,sum(i=0,k,sum(j=0,k-i,sum(p=k-i-j,n, c(n,k,i,j,p) )))) + sum(k=2,n,binomial(n,k)^2*k!*(k-1)!))/2 - n^2} \\ Andrew Howroyd, May 25 2017
    
  • Python
    from sympy import binomial, factorial
    def c(n, k, i, j, p): return binomial(n, k)*binomial(n, i + p)*binomial(n, j + p)*binomial(k, i)*binomial(k - i, j)*factorial(k - 1)*factorial(i + p)*factorial(j + p)*2**(k - i - j)*binomial(p + i + j - 1, k - 1)
    def a(n): return (sum([sum([sum([sum([c(n, k, i, j, p) for p in range(k - i - j, n + 1)]) for j in range(k - i + 1)]) for i in range(k + 1)]) for k in range(1, n + 1)]) + sum(binomial(n, k)**2*factorial(k)*factorial(k - 1) for k in range(2, n + 1)))/2 - n**2
    print([a(k) for k in range(1, 13)]) # Indranil Ghosh, Aug 14 2017, after PARI

Formula

Row sums of A296546.
a(n) ~ sqrt(3*Pi) * 2^(3*n - 1/2) * n^(3*n - 1/2) / exp(3*n - 3/2). - Vaclav Kotesovec, Feb 17 2024

Extensions

a(7)-a(12) from Andrew Howroyd, May 25 2017

A288035 Number of (undirected) paths in the complete bipartite graph K_n,n.

Original entry on oeis.org

1, 12, 135, 2224, 55725, 2006316, 98309827, 6291829440, 509638185369, 50963818537900, 6166622043087231, 887993574204562992, 150070914040571147845, 29413899151951944980364, 6618127309189187620585275, 1694240591152432030869834496, 489635530843052856921382174257
Offset: 1

Views

Author

Eric W. Weisstein, Jun 04 2017

Keywords

Crossrefs

Main diagonal of A307027 and A360850.

Programs

  • Mathematica
    Table[Sum[(n!)^2/((n - Ceiling[k/2])! (n - Floor[k/2])!), {k, 2, 2 n}], {n, 20}] (* Eric W. Weisstein, Jun 13 2017 *)
    Table[n!^2 (BesselI[0, 2] + BesselI[1, 2] - HypergeometricPFQRegularized[{1}, {1 + n, 1 + n}, 1]) - n HypergeometricPFQ[{1}, {n, 1 + n}, 1], {n, 20}] // FunctionExpand (* Eric W. Weisstein, Jun 13 2017 *)
  • PARI
    a(n) = sum(k=2, 2*n, n!^2/((n-(k+1)\2)!*(n-k\2)!)); \\ Andrew Howroyd, Jun 10 2017
    
  • PARI
    a(n) = n!^2*sum(k=0, n-1, (1 + k)/(k!)^2) \\ Andrew Howroyd, Feb 24 2023

Formula

a(n) = Sum_{k=2..2*n} n!^2/((n-ceiling(k/2))!*(n-floor(k/2))!). - Andrew Howroyd, Jun 10 2017
a(n) = n!^2 * Sum_{k=0..n-1} (1 + k)/(k!^2). - Andrew Howroyd, Feb 24 2023

Extensions

Terms a(8) and beyond from Andrew Howroyd, Jun 10 2017

A291909 Triangle read by rows: T(n,k) is the coefficient of x^(2*k) in the cycle polynomial of the complete bipartite graph K_{n,n}, 1 <= k <= n.

Original entry on oeis.org

0, 0, 1, 0, 9, 6, 0, 36, 96, 72, 0, 100, 600, 1800, 1440, 0, 225, 2400, 16200, 51840, 43200, 0, 441, 7350, 88200, 635040, 2116800, 1814400, 0, 784, 18816, 352800, 4515840, 33868800, 116121600, 101606400, 0, 1296, 42336, 1143072, 22861440, 304819200, 2351462400, 8230118400, 7315660800
Offset: 1

Views

Author

Eric W. Weisstein, Sep 05 2017

Keywords

Comments

Also the coefficients of x^(2*k) in the chordless cycle polynomial of the n X n rook graph. - Eric W. Weisstein, Feb 21 2018

Examples

			Cycle polynomials are
        0
      x^4
    9 x^4 +   6 x^6
   36 x^4 +  96 x^6 +   72 x^8
  100 x^4 + 600 x^6 + 1800 x^8 + 1440 x^10
  ...
so the first few rows are
  0;
  0,  1;
  0,  9,  6;
  0, 36, 96, 72;
  ...
		

Crossrefs

Cf. A070968 (row sums), A010796 (main diagonal).

Programs

  • Mathematica
    CoefficientList[Table[Sum[Binomial[n, k]^2 k! (k - 1)! x^k, {k, 2, n}]/2, {n, 10}], x] // Flatten
    Join[{0}, CoefficientList[Table[n^2 (HypergeometricPFQ[{1, 1, 1 - n, 1 - n}, {2}, x] - 1)/2, {n, 2, 10}], x]] // Flatten (* Eric W. Weisstein, Feb 21 2018 *)
  • PARI
    T(n, k) = if(k>1, binomial(n, k)^2*k!*(k - 1)!/2, 0) \\ Andrew Howroyd, Apr 29 2018

Formula

T(n, k) = binomial(n, k)^2*k!*(k - 1)!/2 for k > 1.

Extensions

Terms T(n,0) for n >= 3 deleted (in order to have a regular triangle) by Pontus von Brömssen, Sep 06 2022

A360849 Array read by antidiagonals: T(m,n) is the number of (undirected) cycles in the complete bipartite graph K_{m,n}.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 6, 15, 6, 0, 0, 10, 42, 42, 10, 0, 0, 15, 90, 204, 90, 15, 0, 0, 21, 165, 660, 660, 165, 21, 0, 0, 28, 273, 1650, 3940, 1650, 273, 28, 0, 0, 36, 420, 3486, 15390, 15390, 3486, 420, 36, 0, 0, 45, 612, 6552, 45150, 113865, 45150, 6552, 612, 45, 0
Offset: 1

Views

Author

Andrew Howroyd, Feb 23 2023

Keywords

Comments

Also, T(m,n) is the number of chordless cycles of length >= 4 in the m X n rook graph.

Examples

			Array begins:
========================================================
m\n| 1  2   3    4      5       6        7         8 ...
---+----------------------------------------------------
1  | 0  0   0    0      0       0        0         0 ...
2  | 0  1   3    6     10      15       21        28 ...
3  | 0  3  15   42     90     165      273       420 ...
4  | 0  6  42  204    660    1650     3486      6552 ...
5  | 0 10  90  660   3940   15390    45150    109480 ...
6  | 0 15 165 1650  15390  113865   526155   1776180 ...
7  | 0 21 273 3486  45150  526155  4662231  24864588 ...
8  | 0 28 420 6552 109480 1776180 24864588 256485040 ...
  ...
Lower half of array as triangle T(n,k) for 1 <= k <= n begins:
  0;
  0,  1;
  0,  3,  15;
  0,  6,  42,  204;
  0, 10,  90,  660,  3940;
  0, 15, 165, 1650, 15390, 113865;
  0, 21, 273, 3486, 45150, 526155, 4662231;
  ...
		

Crossrefs

Rows 1..3 are A000004, A000217(n-1), A059270(n-1).
Main diagonal is A070968.
Cf. A269562, A286418, A360850 (paths), A360853.

Programs

  • PARI
    T(m,n) = sum(j=2, min(m,n), binomial(m,j)*binomial(n,j)*j!*(j-1)!/2)

Formula

T(m,n) = Sum_{j=2..min(m,n)} binomial(m,j)*binomial(n,j)*j!*(j-1)!/2.
T(m,n) = T(n,m).

A303542 Number of chordless cycles in the n X n white bishop graph.

Original entry on oeis.org

0, 1, 3, 19, 97, 678, 5098, 52170, 582342, 8221455, 125339157, 2312227461, 45664819407, 1056675718876, 26022340062564, 734233350312484, 21939269071805596, 738213020202917421, 26196923530426606903, 1032994592794340235015, 42808941242555092330701
Offset: 2

Views

Author

Eric W. Weisstein, Apr 25 2018

Keywords

Comments

The chordless cycles in a bishop graph are those cycles which have at most one edge on any diagonal or antidiagonal. - Andrew Howroyd, Apr 29 2018

Crossrefs

Cf. A070968.
Cf. A370210 (black bishop), A370224 (bishop).

Programs

  • PARI
    SafeMat(m)={my(d=matsize(m));((j,k)->if(j>0&&j<=d[1]&&k>0&&k<=d[2], m[j,k]))}
    CC(sig,x)={my(v=SafeMat([;]), total=0);
    forstep(i=#sig, 2, -1, my(t=sig[i]);
       v=SafeMat(matrix(t, t\2, j, k, v(j,k) + x*(if(j==2&&k==1, binomial(t,2)) + v(j-2,k-1)*binomial(t-j+2,2) + v(j-1,k)*2*k*(t-j+1) + v(j,k+1)*2*k*(k+1))));
       total+=sum(j=1,t,v(j,1)) );
    total}
    Bishop(n, white)=vector(n-if(white, n%2, 1-n%2), i, n-i+if(white, 1-i%2, i%2));
    a(n) = CC(Bishop(n,1),1) \\ Andrew Howroyd, Apr 29 2018
    
  • PARI
    \\ CCGenRook, Bishop defined in A370224 (slightly faster version).
    a(n) = subst(CCGenRook(Bishop(n,1)), y, 1) \\ Andrew Howroyd, May 27 2025

Formula

For n > 1, a(n) = A370224(n) - A370210(n).

Extensions

a(8)-a(22) from Andrew Howroyd, Apr 29 2018

A360854 Number of induced cycles in the n X n rook graph.

Original entry on oeis.org

0, 1, 21, 236, 4040, 114105, 4662721, 256485936, 18226110456, 1623855703785, 177195820502965, 23237493232958796, 3605437233380103056, 653193551573628910481, 136634950180317224879985, 32681589590709963123110080, 8863149183726257535369656976
Offset: 1

Views

Author

Andrew Howroyd, Feb 24 2023

Keywords

Comments

Induced cycles are sometimes called chordless cycles (but some definitions require chordless cycles to have a cycle length of at least 4). See A070968 for the version that excludes triangles.

Crossrefs

Main diagonal of A360853.

Programs

  • PARI
    a(n) = 2*n*binomial(n,3) + sum(k=2, n, binomial(n,k)^2 * k! * (k-1)!)/2

Formula

a(n) = A288961(n) + A070968(n).
a(n) = 2*n*binomial(n,3) + Sum_{k=2..n} binomial(n,k)^2 * k! * (k-1)! / 2.

A361185 Number of chordless cycles in the n X n rook complement graph.

Original entry on oeis.org

0, 0, 15, 264, 1700, 6900, 21315, 54880, 123984, 253800, 480975, 856680, 1450020, 2351804, 3678675, 5577600, 8230720, 11860560, 16735599, 23176200, 31560900, 42333060, 56007875, 73179744, 94530000, 120835000, 152974575, 191940840, 238847364, 294938700
Offset: 1

Views

Author

Eric W. Weisstein, Mar 03 2023

Keywords

Comments

Using the convention that chordless cycles have length >= 4.
All chordless cycles in the rook complement graph have a cycle length of either 4 or 6. - Andrew Howroyd, Mar 03 2023

Crossrefs

Programs

  • Mathematica
    Table[(n - 2) (n - 1)^2 n^2 (6 n - 13)/12, {n, 20}]
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 15, 264, 1700, 6900, 21315}, 20]
    CoefficientList[Series[x^2 (15 + 159 x + 167 x^2 + 19 x^3)/(1 - x)^7, {x, 0, 20}], x]
  • PARI
    a(n) = 2*binomial(n,2)*binomial(n,3) + 9*binomial(n,3)^2 + 12*binomial(n,4)*binomial(n,2) \\ Andrew Howroyd, Mar 03 2023

Formula

a(n) = 2*binomial(n,2)*binomial(n,3) + 9*binomial(n,3)^2 + 12*binomial(n,4)*binomial(n,2). - Andrew Howroyd, Mar 03 2023
a(n) = (n - 2)*(n - 1)^2*n^2*(6*n - 13)/12.
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).
G.f.: x^3*(15+159*x+167*x^2+19*x^3)/(1-x)^7.

Extensions

Terms a(8) and beyond from Andrew Howroyd, Mar 03 2023
Showing 1-8 of 8 results.