cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A360853 Array read by antidiagonals: T(m,n) is the number of induced cycles in the rook graph K_m X K_n.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 4, 5, 5, 4, 10, 14, 21, 14, 10, 20, 30, 58, 58, 30, 20, 35, 55, 125, 236, 125, 55, 35, 56, 91, 231, 720, 720, 231, 91, 56, 84, 140, 385, 1754, 4040, 1754, 385, 140, 84, 120, 204, 596, 3654, 15550, 15550, 3654, 596, 204, 120
Offset: 1

Views

Author

Andrew Howroyd, Feb 24 2023

Keywords

Comments

Induced cycles are sometimes called chordless cycles (but some definitions require chordless cycles to have a cycle length of at least 4). See A360849 for the version that excludes triangles.

Examples

			Array begins:
==========================================================
m\n|  1   2   3    4      5       6        7         8 ...
---+------------------------------------------------------
1  |  0   0   1    4     10      20       35        56 ...
2  |  0   1   5   14     30      55       91       140 ...
3  |  1   5  21   58    125     231      385       596 ...
4  |  4  14  58  236    720    1754     3654      6808 ...
5  | 10  30 125  720   4040   15550    45395    109840 ...
6  | 20  55 231 1754  15550  114105   526505   1776676 ...
7  | 35  91 385 3654  45395  526505  4662721  24865260 ...
8  | 56 140 596 6808 109840 1776676 24865260 256485936 ...
  ...
		

Crossrefs

Main diagonal is A360854.
Rows 1..2 are A000292(n-2), A000330(n-1).
Cf. A360196, A360849, A360851 (induced paths), A360855 (triangles).

Programs

  • PARI
    T(m, n) = m*binomial(n,3) + n*binomial(m,3) + sum(j=2, min(m, n), binomial(m, j)*binomial(n, j)*j!*(j-1)!/2)

Formula

T(m,n) = A360849(m,n) + A360855(m,n).
T(m,n) = T(n,m).

A361185 Number of chordless cycles in the n X n rook complement graph.

Original entry on oeis.org

0, 0, 15, 264, 1700, 6900, 21315, 54880, 123984, 253800, 480975, 856680, 1450020, 2351804, 3678675, 5577600, 8230720, 11860560, 16735599, 23176200, 31560900, 42333060, 56007875, 73179744, 94530000, 120835000, 152974575, 191940840, 238847364, 294938700
Offset: 1

Views

Author

Eric W. Weisstein, Mar 03 2023

Keywords

Comments

Using the convention that chordless cycles have length >= 4.
All chordless cycles in the rook complement graph have a cycle length of either 4 or 6. - Andrew Howroyd, Mar 03 2023

Crossrefs

Programs

  • Mathematica
    Table[(n - 2) (n - 1)^2 n^2 (6 n - 13)/12, {n, 20}]
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 15, 264, 1700, 6900, 21315}, 20]
    CoefficientList[Series[x^2 (15 + 159 x + 167 x^2 + 19 x^3)/(1 - x)^7, {x, 0, 20}], x]
  • PARI
    a(n) = 2*binomial(n,2)*binomial(n,3) + 9*binomial(n,3)^2 + 12*binomial(n,4)*binomial(n,2) \\ Andrew Howroyd, Mar 03 2023

Formula

a(n) = 2*binomial(n,2)*binomial(n,3) + 9*binomial(n,3)^2 + 12*binomial(n,4)*binomial(n,2). - Andrew Howroyd, Mar 03 2023
a(n) = (n - 2)*(n - 1)^2*n^2*(6*n - 13)/12.
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).
G.f.: x^3*(15+159*x+167*x^2+19*x^3)/(1-x)^7.

Extensions

Terms a(8) and beyond from Andrew Howroyd, Mar 03 2023
Showing 1-2 of 2 results.