A360853 Array read by antidiagonals: T(m,n) is the number of induced cycles in the rook graph K_m X K_n.
0, 0, 0, 1, 1, 1, 4, 5, 5, 4, 10, 14, 21, 14, 10, 20, 30, 58, 58, 30, 20, 35, 55, 125, 236, 125, 55, 35, 56, 91, 231, 720, 720, 231, 91, 56, 84, 140, 385, 1754, 4040, 1754, 385, 140, 84, 120, 204, 596, 3654, 15550, 15550, 3654, 596, 204, 120
Offset: 1
Examples
Array begins: ========================================================== m\n| 1 2 3 4 5 6 7 8 ... ---+------------------------------------------------------ 1 | 0 0 1 4 10 20 35 56 ... 2 | 0 1 5 14 30 55 91 140 ... 3 | 1 5 21 58 125 231 385 596 ... 4 | 4 14 58 236 720 1754 3654 6808 ... 5 | 10 30 125 720 4040 15550 45395 109840 ... 6 | 20 55 231 1754 15550 114105 526505 1776676 ... 7 | 35 91 385 3654 45395 526505 4662721 24865260 ... 8 | 56 140 596 6808 109840 1776676 24865260 256485936 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Eric Weisstein's World of Mathematics, Rook Graph.
- Wikipedia, Cycle (graph theory).
Crossrefs
Programs
-
PARI
T(m, n) = m*binomial(n,3) + n*binomial(m,3) + sum(j=2, min(m, n), binomial(m, j)*binomial(n, j)*j!*(j-1)!/2)
Comments