A360855 Array read by antidiagonals: T(m,n) is the number of triangles in the rook graph K_m X K_n.
0, 0, 0, 1, 0, 1, 4, 2, 2, 4, 10, 8, 6, 8, 10, 20, 20, 16, 16, 20, 20, 35, 40, 35, 32, 35, 40, 35, 56, 70, 66, 60, 60, 66, 70, 56, 84, 112, 112, 104, 100, 104, 112, 112, 84, 120, 168, 176, 168, 160, 160, 168, 176, 168, 120, 165, 240, 261, 256, 245, 240, 245, 256, 261, 240, 165
Offset: 1
Examples
Array begins: ======================================= m\n| 1 2 3 4 5 6 7 8 ... ---+----------------------------------- 1 | 0 0 1 4 10 20 35 56 ... 2 | 0 0 2 8 20 40 70 112 ... 3 | 1 2 6 16 35 66 112 176 ... 4 | 4 8 16 32 60 104 168 256 ... 5 | 10 20 35 60 100 160 245 360 ... 6 | 20 40 66 104 160 240 350 496 ... 7 | 35 70 112 168 245 350 490 672 ... 8 | 56 112 176 256 360 496 672 896 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Eric Weisstein's World of Mathematics, Rook Graph.
Crossrefs
Programs
-
PARI
T(m, n) = m*binomial(n,3) + n*binomial(m,3)
Formula
T(m,n) = m*binomial(n,3) + n*binomial(m,3).
T(m,n) = T(n,m).
Comments