cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A288961 Number of 3-cycles in the n X n rook graph.

Original entry on oeis.org

0, 0, 6, 32, 100, 240, 490, 896, 1512, 2400, 3630, 5280, 7436, 10192, 13650, 17920, 23120, 29376, 36822, 45600, 55860, 67760, 81466, 97152, 115000, 135200, 157950, 183456, 211932, 243600, 278690, 317440, 360096, 406912, 458150, 514080, 574980, 641136, 712842, 790400
Offset: 1

Views

Author

Eric W. Weisstein, Jun 20 2017

Keywords

Crossrefs

Cf. A288962 (4-cycles), A288963 (5-cycles), A288960 (6-cycles).
Main diagonal of A360855.

Programs

  • Mathematica
    Table[n^2 (n - 1) (n - 2)/3, {n, 20}]
    Table[2 n Binomial[n, 3], {n, 20}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 6, 32, 100}, 20]
    CoefficientList[Series[-((2 x^2 (3 + x))/(-1 + x)^5), {x, 0, 20}], x]
  • PARI
    a(n) = {2*n*binomial(n,3)} \\ Andrew Howroyd, Apr 26 2020

Formula

a(n) = 2*n*binomial(n,3).
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5).
G.f.: (-2*x^3*(3+x))/(-1+x)^5.

Extensions

Terms a(31) and beyond from Andrew Howroyd, Apr 26 2020

A360853 Array read by antidiagonals: T(m,n) is the number of induced cycles in the rook graph K_m X K_n.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 4, 5, 5, 4, 10, 14, 21, 14, 10, 20, 30, 58, 58, 30, 20, 35, 55, 125, 236, 125, 55, 35, 56, 91, 231, 720, 720, 231, 91, 56, 84, 140, 385, 1754, 4040, 1754, 385, 140, 84, 120, 204, 596, 3654, 15550, 15550, 3654, 596, 204, 120
Offset: 1

Views

Author

Andrew Howroyd, Feb 24 2023

Keywords

Comments

Induced cycles are sometimes called chordless cycles (but some definitions require chordless cycles to have a cycle length of at least 4). See A360849 for the version that excludes triangles.

Examples

			Array begins:
==========================================================
m\n|  1   2   3    4      5       6        7         8 ...
---+------------------------------------------------------
1  |  0   0   1    4     10      20       35        56 ...
2  |  0   1   5   14     30      55       91       140 ...
3  |  1   5  21   58    125     231      385       596 ...
4  |  4  14  58  236    720    1754     3654      6808 ...
5  | 10  30 125  720   4040   15550    45395    109840 ...
6  | 20  55 231 1754  15550  114105   526505   1776676 ...
7  | 35  91 385 3654  45395  526505  4662721  24865260 ...
8  | 56 140 596 6808 109840 1776676 24865260 256485936 ...
  ...
		

Crossrefs

Main diagonal is A360854.
Rows 1..2 are A000292(n-2), A000330(n-1).
Cf. A360196, A360849, A360851 (induced paths), A360855 (triangles).

Programs

  • PARI
    T(m, n) = m*binomial(n,3) + n*binomial(m,3) + sum(j=2, min(m, n), binomial(m, j)*binomial(n, j)*j!*(j-1)!/2)

Formula

T(m,n) = A360849(m,n) + A360855(m,n).
T(m,n) = T(n,m).

A360877 Array read by antidiagonals: T(m,n) is the number of (undirected) paths in the rook graph K_m X K_n.

Original entry on oeis.org

0, 1, 1, 6, 12, 6, 30, 129, 129, 30, 160, 1984, 4536, 1984, 160, 975, 45945, 310542, 310542, 45945, 975, 6846, 1524156, 38298270, 111933456, 38298270, 1524156, 6846
Offset: 1

Views

Author

Andrew Howroyd, Feb 25 2023

Keywords

Examples

			Array begins:
==============================================
m\n|   1     2        3         4        5 ...
---+------------------------------------------
1  |   0     1        6        30      160 ...
2  |   1    12      129      1984    45945 ...
3  |   6   129     4536    310542 38298270 ...
4  |  30  1984   310542 111933456 ...
5  | 160 45945 38298270 ...
  ...
		

Crossrefs

Main diagonal is A288967.
Rows 1..2 are A038155, A360878.

A384125 Array read by antidiagonals: T(n,m) is the number of edges in the n X m rook graph K_n X K_m.

Original entry on oeis.org

0, 1, 1, 3, 4, 3, 6, 9, 9, 6, 10, 16, 18, 16, 10, 15, 25, 30, 30, 25, 15, 21, 36, 45, 48, 45, 36, 21, 28, 49, 63, 70, 70, 63, 49, 28, 36, 64, 84, 96, 100, 96, 84, 64, 36, 45, 81, 108, 126, 135, 135, 126, 108, 81, 45, 55, 100, 135, 160, 175, 180, 175, 160, 135, 100, 55
Offset: 1

Views

Author

Andrew Howroyd, May 20 2025

Keywords

Examples

			Array begins:
=======================================
n\m |  1  2   3   4   5   6   7   8 ...
----+----------------------------------
  1 |  0  1   3   6  10  15  21  28 ...
  2 |  1  4   9  16  25  36  49  64 ...
  3 |  3  9  18  30  45  63  84 108 ...
  4 |  6 16  30  48  70  96 126 160 ...
  5 | 10 25  45  70 100 135 175 220 ...
  6 | 15 36  63  96 135 180 231 288 ...
  7 | 21 49  84 126 175 231 294 364 ...
  8 | 28 64 108 160 220 288 364 448 ...
  ...
		

Crossrefs

Main diagonal is A045991.
Columns 1..6 are A000217(n-1), A000290, A045943, A054000, A269457(n-1), A067707.
Cf. A003991 (number of vertices), A360855 (triangles), A384120 (all cliques).

Programs

  • Mathematica
    Table[#*Binomial[m, 2] + m*Binomial[#, 2] &[n - m + 1], {n, 11}, {m, n}] // Flatten (* Michael De Vlieger, May 22 2025 *)
  • PARI
    T(n,m) = n*binomial(m,2) + m*binomial(n,2)

Formula

T(n,m) = n*binomial(m,2) + m*binomial(n,2).
T(n,m) = binomial(n*m,2) - 2*binomial(n,2)*binomial(m,2).
T(n,m) = T(m,n).
Showing 1-4 of 4 results.