cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A070968 Number of cycles in the complete bipartite graph K(n,n).

Original entry on oeis.org

0, 1, 15, 204, 3940, 113865, 4662231, 256485040, 18226108944, 1623855701385, 177195820499335, 23237493232953516, 3605437233380095620, 653193551573628900289, 136634950180317224866335, 32681589590709963123092160, 8863149183726257535369633856
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 17 2002

Keywords

Comments

Also the number of chordless cycles in the n X n rook graph. - Eric W. Weisstein, Nov 27 2017

Crossrefs

Row sums of A291909.
Main diagonal of A360849.

Programs

  • Maple
    seq(simplify((1/4)*hypergeom([1, 2, 2-n, 2-n], [3], 1)*(n-1)^2*n^2), n=1..20); # Robert Israel, Jan 09 2018
  • Mathematica
    Table[Sum[Binomial[n, k]^2*k!*(k - 1)!, {k, 2, n}]/2, {n, 1, 17}]
    Table[n^2 (HypergeometricPFQ[{1, 1, 1 - n, 1 - n}, {2}, 1] - 1)/2, {n, 20}] (* Eric W. Weisstein, Dec 14 2017 *)
  • PARI
    for(n=1,50,print1(sum(k=2,n,binomial(n,k)^2 * k! * (k-1)!/2),","))

Formula

a(n) = Sum_{k=2..n} C(n,k)^2 * k! * (k-1)! / 2.
Recurrence: (n-2)^2*(2*n^3 - 19*n^2 + 58*n - 59)*a(n) = 2*(2*n^7 - 31*n^6 + 200*n^5 - 700*n^4 + 1442*n^3 - 1764*n^2 + 1205*n - 363)*a(n-1) - (n-1)^2*(2*n^7 - 35*n^6 + 266*n^5 - 1139*n^4 + 2962*n^3 - 4671*n^2 + 4130*n - 1578)*a(n-2) + 2*(n-2)^2*(n-1)^2*(2*n^5 - 26*n^4 + 134*n^3 - 342*n^2 + 431*n - 217)*a(n-3) - (n-3)^2*(n-2)^2*(n-1)^2*(2*n^3 - 13*n^2 + 26*n - 18)*a(n-4). - Vaclav Kotesovec, Mar 08 2016
a(n) ~ c * n! * (n-1)!, where c = BesselI(0,2)/2 = 1.1397926511680336337186... . - Vaclav Kotesovec, Mar 08 2016

Extensions

More terms from Benoit Cloitre and Robert G. Wilson v, May 20 2002
a(16)-a(17) from Andrew Howroyd, Jan 08 2018

A010796 a(n) = n!*(n+1)!/2.

Original entry on oeis.org

1, 6, 72, 1440, 43200, 1814400, 101606400, 7315660800, 658409472000, 72425041920000, 9560105533440000, 1491376463216640000, 271430516305428480000, 57000408424139980800000, 13680098021793595392000000, 3720986661927857946624000000
Offset: 1

Views

Author

Keywords

Comments

Column 2 in triangle A009963.
a(n) = A078740(n, 2), first column of (3, 2)-Stirling2 array.
Also the number of undirected Hamiltonian paths in the complete bipartite graph K_{n,n+1}. - Eric W. Weisstein, Sep 03 2017
Also, the number of undirected Hamiltonian cycles in the complete bipartite graph K_{n+1,n+1}. - Pontus von Brömssen, Sep 06 2022

Crossrefs

Main diagonal of A291909.

Programs

  • Magma
    [Factorial(n)* Factorial(n+1) / 2: n in [1..20]]; // Vincenzo Librandi, Jun 11 2013
    
  • Mathematica
    Table[n! (n + 1)! / 2, {n, 1, 20}] (* Vincenzo Librandi, Jun 11 2013 *)
    Times@@@Partition[Range[20]!,2,1]/2 (* Harvey P. Dale, Jul 04 2017 *)
  • PARI
    for(n=1,30, print1(n!*(n+1)!/2, ", ")) \\ G. C. Greubel, Feb 07 2018

Formula

a(n) = 2^(n-1) * A006472(n+1).
a(n) = A010790(n)/2.
E.g.f.: (hypergeom([1, 2], [], x)-1)/2.
a(n) = Product_{k=1..n-1} (k^2+3*k+2). - Gerry Martens, May 09 2016
E.g.f.: x*hypergeom([1, 3], [], x). - Robert Israel, May 09 2016
From Amiram Eldar, Jun 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 2*(BesselI(1, 2) - 1).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(1 - BesselJ(1, 2)). (End)

A296546 Triangle read by rows T(n,k): number of undirected cycles of length k in the complete tripartite graph K_{n,n,n} (n = 1...; k = 3..3n).

Original entry on oeis.org

1, 8, 15, 24, 16, 27, 108, 324, 774, 1620, 2268, 1584, 64, 396, 1728, 7200, 27648, 87480, 232704, 476928, 663552, 463104, 125, 1050, 6000, 35800, 198000, 977400, 4392000, 17068320, 56376000, 151632000, 311040000, 430272000, 299289600
Offset: 1

Views

Author

Eric W. Weisstein, Dec 15 2017

Keywords

Examples

			Written as cycle polynomials:
  x^3
  8 x^3 + 15 x^4 + 24 x^5 + 16 x^6
  27 x^3 + 108 x^4 + 324 x^5 + 774 x^6 + 1620 x^7 + 2268 x^8 + 1584 x^9
  64 x^3 + 396 x^4 + 1728 x^5 + 7200 x^6 + 27648 x^7 + 87480 x^8 + 232704 x^9 + 476928 x^10 + 663552 x^11 + 463104 x^12
giving the array
  1
  8, 15, 24, 16
  27, 108, 324, 774, 1620, 2268, 1584
  64, 396, 1728, 7200, 27648, 87480, 232704, 476928, 663552, 463104
		

Crossrefs

Cf. A234616 (number of undirected cycles in K_{n,n,n}).
Cf. A144151 (cycle polynomial coefficients of complete graph K_n).
Cf. A291909 (cycle polynomial coefficients of complete bipartite graph K_{n,n}).

Programs

  • Mathematica
    Table[Tally[Length /@ FindCycle[CompleteGraph[{n, n, n}], Infinity, All]][[All, 2]], {n, 4}] // Flatten

Formula

Row sums of T(n,k) give A234616(n).
Showing 1-3 of 3 results.