cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A009963 Triangle of numbers n!(n-1)!...(n-k+1)!/(1!2!...k!).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 24, 72, 24, 1, 1, 120, 1440, 1440, 120, 1, 1, 720, 43200, 172800, 43200, 720, 1, 1, 5040, 1814400, 36288000, 36288000, 1814400, 5040, 1, 1, 40320, 101606400, 12192768000, 60963840000, 12192768000, 101606400, 40320, 1
Offset: 0

Views

Author

Keywords

Comments

Product of all matrix elements of n X k matrix M(i,j) = i+j (i=1..n-k, j=1..k). - Peter Luschny, Nov 26 2012
These are the generalized binomial coefficients associated to the sequence A000178. - Tom Edgar, Feb 13 2014

Examples

			Rows start:
  1;
  1,   1;
  1,   2,    1;
  1,   6,    6,    1;
  1,  24,   72,   24,   1;
  1, 120, 1440, 1440, 120, 1;  etc.
		

Crossrefs

Central column is A079478.
Columns include A010796, A010797, A010798, A010799, A010800.
Row sums give A193520.

Programs

  • Magma
    A009963:= func< n,k | (1/Factorial(n+1))*(&*[ Factorial(n-j+1)/Factorial(j): j in [0..k]]) >;
    [A009963(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 04 2022
  • Mathematica
    (* First program *)
    row[n_]:= Table[Product[i+j, {i,1,n-k}, {j,1,k}], {k,0,n}];
    Array[row, 9, 0] // Flatten (* Jean-François Alcover, Jun 01 2019, after Peter Luschny *)
    (* Second program *)
    T[n_, k_]:= BarnesG[n+2]/(BarnesG[k+2]*BarnesG[n-k+2]);
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 04 2022 *)
  • Sage
    def A009963_row(n):
        return [mul(mul(i+j for j in (1..k)) for i in (1..n-k)) for k in (0..n)]
    for n in (0..7): A009963_row(n)  # Peter Luschny, Nov 26 2012
    
  • Sage
    def triangle_to_n_rows(n): #changing n will give you the triangle to row n.
        N=[[1]+n*[0]]
        for i in [1..n]:
            N.append([])
            for j in [0..n]:
                if i>=j:
                    N[i].append(factorial(i-j)*binomial(i-1,j-1)*N[i-1][j-1]+factorial(j)*binomial(i-1,j)*N[i-1][j])
                else:
                    N[i].append(0)
        return [[N[i][j] for j in [0..i]] for i in [0..n]]
        # Tom Edgar, Feb 13 2014
    

Formula

T(n,k) = T(n-1,k-1)*A008279(n,n-k) = A000178(n)/(A000178(k)*A000178(n-k)) i.e., a "supercombination" of "superfactorials". - Henry Bottomley, May 22 2002
Equals ConvOffsStoT transform of the factorials starting (1, 2, 6, 24, ...); e.g., ConvOffs transform of (1, 2, 6, 24) = (1, 24, 72, 24, 1). Note that A090441 = ConvOffsStoT transform of the factorials, A000142. - Gary W. Adamson, Apr 21 2008
Asymptotic: T(n,k) ~ exp((3/2)*k^2 - zeta'(-1) + 3/4 - (3/2)*n*k)*(1+n)^((1/2)*n^2 + n + 5/12)*(1+k)^(-(1/2)*k^2 - k - 5/12)*(1 + n - k)^(-(1/2)*n^2 + n*k - (1/2)*k^2 - n + k - 5/12)/(sqrt(2*Pi). - Peter Luschny, Nov 26 2012
T(n,k) = (n-k)!*C(n-1,k-1)*T(n-1,k-1) + k!*C(n-1,k)*T(n-1,k) where C(i,j) is given by A007318. - Tom Edgar, Feb 13 2014
T(n,k) = Product_{i=1..k} (n+1-i)!/i!. - Alois P. Heinz, Jun 07 2017
T(n,k) = BarnesG(n+2)/(BarnesG(k+2)*BarnesG(n-k+2)). - G. C. Greubel, Jan 04 2022

A002397 a(n) = n! * lcm({1, 2, ..., n+1}).

Original entry on oeis.org

1, 2, 12, 72, 1440, 7200, 302400, 4233600, 101606400, 914457600, 100590336000, 1106493696000, 172613016576000, 2243969215488000, 31415569016832000, 942467070504960000, 256351043177349120000, 4357967734014935040000, 1490424965033107783680000
Offset: 0

Views

Author

Keywords

Comments

This term appears in the numerator of several sequences of coefficients used in numerical solutions of ordinary differential equations.

Examples

			5! is 120, and the least common multiple of 2, 3, 4, 5 and 6 is 60, so a(5) = 7200.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A010796. Row sums of A260780, also of A260781.
The following sequences are taken from page 231 of Pickard (1964): A002397, A002398, A002399, A002400, A002401, A002402, A002403, A002404, A002405, A002406, A260780, A260781.

Programs

Formula

a(n) = n! * lcm{1,2,...,n+1} = n!*A003418(n+1). - Sean A. Irvine, Nov 07 2013

Extensions

More terms from Sean A. Irvine, Nov 07 2013
More terms from Jack W Grahl, Feb 27 2021

A091543 Triangle built from first column sequences of generalized Stirling2 arrays (m+2,2)-Stirling2, m >= 0.

Original entry on oeis.org

1, 2, 1, 4, 6, 1, 8, 72, 12, 1, 16, 1440, 360, 20, 1, 32, 43200, 20160, 1120, 30, 1, 64, 1814400, 1814400, 123200, 2700, 42, 1, 128, 101606400, 239500800, 22422400, 491400, 5544, 56, 1, 256, 7315660800, 43589145600, 6098892800, 150368400
Offset: 1

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Crossrefs

Cf. A091547 (row sums), A091548 (alternating row sums).
For m = 0, 1, ..., 6 the column sequences are (without leading zeros): A000079 (powers of 2), A010796, A002674, A091535, A091544-6.

Formula

a(n, m) = m^(2*(n-m))*Pochhammer(1/m, n-m)*Pochhammer(2/m, n-m)/2 if n-1 >= m >= 1; a(n, 0) = 2^(n-1); otherwise 0.
E.g.f. for m = 1, 2, ... column (without leading zeros and offset n=1): (hypergeom([1/m, 2/m], [], (m^2)*x)-1)/2.
G.f. for m=1 column: x/(1-2*x); e.g.f.: (exp(2*x)-1)/2.
a(n, m) = (1/2)*Product_{j=0..n-m-1} (m*j+2)*(m*j+1), n >= m+1 >= 1, otherwise 0. From eq. 12 of the Blasiak et al. reference with r=m+2, s=2, k=2.

A291909 Triangle read by rows: T(n,k) is the coefficient of x^(2*k) in the cycle polynomial of the complete bipartite graph K_{n,n}, 1 <= k <= n.

Original entry on oeis.org

0, 0, 1, 0, 9, 6, 0, 36, 96, 72, 0, 100, 600, 1800, 1440, 0, 225, 2400, 16200, 51840, 43200, 0, 441, 7350, 88200, 635040, 2116800, 1814400, 0, 784, 18816, 352800, 4515840, 33868800, 116121600, 101606400, 0, 1296, 42336, 1143072, 22861440, 304819200, 2351462400, 8230118400, 7315660800
Offset: 1

Views

Author

Eric W. Weisstein, Sep 05 2017

Keywords

Comments

Also the coefficients of x^(2*k) in the chordless cycle polynomial of the n X n rook graph. - Eric W. Weisstein, Feb 21 2018

Examples

			Cycle polynomials are
        0
      x^4
    9 x^4 +   6 x^6
   36 x^4 +  96 x^6 +   72 x^8
  100 x^4 + 600 x^6 + 1800 x^8 + 1440 x^10
  ...
so the first few rows are
  0;
  0,  1;
  0,  9,  6;
  0, 36, 96, 72;
  ...
		

Crossrefs

Cf. A070968 (row sums), A010796 (main diagonal).

Programs

  • Mathematica
    CoefficientList[Table[Sum[Binomial[n, k]^2 k! (k - 1)! x^k, {k, 2, n}]/2, {n, 10}], x] // Flatten
    Join[{0}, CoefficientList[Table[n^2 (HypergeometricPFQ[{1, 1, 1 - n, 1 - n}, {2}, x] - 1)/2, {n, 2, 10}], x]] // Flatten (* Eric W. Weisstein, Feb 21 2018 *)
  • PARI
    T(n, k) = if(k>1, binomial(n, k)^2*k!*(k - 1)!/2, 0) \\ Andrew Howroyd, Apr 29 2018

Formula

T(n, k) = binomial(n, k)^2*k!*(k - 1)!/2 for k > 1.

Extensions

Terms T(n,0) for n >= 3 deleted (in order to have a regular triangle) by Pontus von Brömssen, Sep 06 2022

A112578 Number of indecomposable 3-D arrays of 0's and 1's with plane sums 2.

Original entry on oeis.org

0, 8, 900, 359424, 370828800, 820150272000, 3435918974208000, 24957654229057536000, 294060698786444083200000, 5334667831784096818790400000, 42889554205720574193041408000000
Offset: 1

Views

Author

Peter J. Cameron, Sep 14 2005

Keywords

Examples

			a(2)=8: six pairs of opposite edges and two inscribed tetrahedra.
		

References

  • P. J. Cameron and T. W. Mueller, Decomposable functors and the exponential principle, II, in preparation

Crossrefs

Cf. A010796 (2-D case), A112579, A112580.

Formula

a(1)=0, a(n) = (n!)^2*b(n)/2^n for n>1, where b(0)=1 and sum (n-1 choose k-1)*((2n-2k-1)!!)^2*b(k) = ((2n-1)!!)^2.

A357003 Number of Hamiltonian cycles in the cyclic Haar graph with index n.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 6, 0, 1, 0, 6, 1, 6, 6, 72, 0, 1, 1, 8, 1, 8, 8, 156, 1, 8, 8, 156, 8, 156, 156, 1440, 0, 1, 0, 8, 0, 12, 12, 335, 0, 12, 0, 300, 12, 352, 300, 4800, 1, 8, 12, 335, 12, 300, 352, 4800, 8, 335, 300, 4800, 335, 4800, 4800, 43200, 0, 1, 1, 10, 1
Offset: 1

Views

Author

Pontus von Brömssen, Sep 08 2022

Keywords

Comments

a(n) > 0 for all odd n >= 3 (Hladnik, Marušič, and Pisanski, 2002).

Crossrefs

Formula

a(2^k-1) = A010796(k-1) for k >= 2.
a(A291165(n)) = 0.
a(n) = a(A357004(n)).

A182062 T(n,k) = C(n+1-k,k)*k!*(n-k)!, the number of ways for k men and n-k women to form a queue in which no man is next to another man.

Original entry on oeis.org

1, 1, 1, 2, 2, 0, 6, 6, 2, 0, 24, 24, 12, 0, 0, 120, 120, 72, 12, 0, 0, 720, 720, 480, 144, 0, 0, 0, 5040, 5040, 3600, 1440, 144, 0, 0, 0, 40320, 40320, 30240, 14400, 2880, 0, 0, 0, 0, 362880, 362880, 282240, 151200, 43200, 2880, 0, 0, 0, 0, 3628800, 3628800
Offset: 0

Views

Author

Dennis P. Walsh, Apr 09 2012

Keywords

Comments

Triangle T(n,k), 0<=k<=n, is readily derived since there are C(n+1-k,k) ways to form a sequence of k zeros and n-k ones in which no zeros are consecutive and there are k!(n-k)! ways to permute k labeled zeros and n-k labeled ones. This triangle contains several known sequences, notably A000142 (factorial numbers), A062119 (number of multiplications performed in a determinant), and A010796.

Examples

			T(4,2)=12 since there are 12 ways to line up two men {M,m} and two women {W,w} so that no man is next to another man, namely, MWmw, MWwm, MwmW, MwWm, mWMw, mWwM, mwMW, mwWM, WMwm, WmwM, wMWm, and wmWM.
Triangle T(n,k) begins
1,
1, 1,
2, 2, 0,
6, 6, 2, 0,
24, 24, 12, 0, 0,
120, 120, 72, 12, 0, 0,
720, 720, 480, 144, 0, 0, 0,
5040, 5040, 3600, 1440, 144, 0, 0, 0,
40320, 40320, 30240, 14400, 2880, 0, 0, 0, 0,
362880,362880,282240,151200,43200,2880,0,0,0,0,
3628800,3628800,2903040,1693440,604800,86400,0,0,0,0,0
		

Crossrefs

T(n,1) = A000142(n);
T(n,2) = A062119(n-1);
T(2n-1,n-1) = A010796;

Programs

  • Maple
    seq(seq(binomial(n+1-k,k)*k!*(n-k)!,k=0..n),n=0..10);
  • Mathematica
    Flatten[Table[Binomial[n+1-k,k]k!(n-k)!,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jul 15 2012 *)

Formula

binomial(n+1-k,k)*k!*(n-k)!
G.f. (fixed k): (1-k)*hypergeom([1, 1-k, 2-k],[2-2*k],t)*GAMMA(1-k)^2/GAMMA(2-2*k)
T(n,k)=(n+2-2k)*T(n-1,k-1)
Showing 1-7 of 7 results.