cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A234633 Numbers of directed Hamiltonian paths in the complete tripartite graph K_{n,n,n}.

Original entry on oeis.org

6, 240, 37584, 15095808, 12420864000, 18233911296000, 43492335022080000, 157551157218115584000, 823642573772373884928000, 5970637844437187690496000000, 58120324656942369834270720000000, 739968068159742816891489484800000000
Offset: 1

Views

Author

Eric W. Weisstein, Dec 28 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2 n!^3 (Binomial[2 n + 1, n + 1] HypergeometricPFQ[{1 - n, 1 - n, 1/2 - n/2, -(n/2)}, {1, -(1/2) - n, -n}, 1] + (n - 1) Binomial[2 n, n + 1] HypergeometricPFQ[{1 - n, 2 - n, 1/2 - n/2, 1 - n/2}, {2, 1/2 - n, -n}, 1]), {n, 10}] (* Eric W. Weisstein, May 26 2017 *)

Formula

a(n) = n!^3 * A110706(n). - Andrew Howroyd, May 24 2017

Extensions

a(7)-a(12) from Andrew Howroyd, May 24 2017

A296546 Triangle read by rows T(n,k): number of undirected cycles of length k in the complete tripartite graph K_{n,n,n} (n = 1...; k = 3..3n).

Original entry on oeis.org

1, 8, 15, 24, 16, 27, 108, 324, 774, 1620, 2268, 1584, 64, 396, 1728, 7200, 27648, 87480, 232704, 476928, 663552, 463104, 125, 1050, 6000, 35800, 198000, 977400, 4392000, 17068320, 56376000, 151632000, 311040000, 430272000, 299289600
Offset: 1

Views

Author

Eric W. Weisstein, Dec 15 2017

Keywords

Examples

			Written as cycle polynomials:
  x^3
  8 x^3 + 15 x^4 + 24 x^5 + 16 x^6
  27 x^3 + 108 x^4 + 324 x^5 + 774 x^6 + 1620 x^7 + 2268 x^8 + 1584 x^9
  64 x^3 + 396 x^4 + 1728 x^5 + 7200 x^6 + 27648 x^7 + 87480 x^8 + 232704 x^9 + 476928 x^10 + 663552 x^11 + 463104 x^12
giving the array
  1
  8, 15, 24, 16
  27, 108, 324, 774, 1620, 2268, 1584
  64, 396, 1728, 7200, 27648, 87480, 232704, 476928, 663552, 463104
		

Crossrefs

Cf. A234616 (number of undirected cycles in K_{n,n,n}).
Cf. A144151 (cycle polynomial coefficients of complete graph K_n).
Cf. A291909 (cycle polynomial coefficients of complete bipartite graph K_{n,n}).

Programs

  • Mathematica
    Table[Tally[Length /@ FindCycle[CompleteGraph[{n, n, n}], Infinity, All]][[All, 2]], {n, 4}] // Flatten

Formula

Row sums of T(n,k) give A234616(n).

A290324 Number of (undirected) paths in the complete tripartite graph K_{n,n,n}.

Original entry on oeis.org

6, 396, 67554, 28336848, 23986682550, 35931274250076, 87017657752978386, 318992998488391738944, 1683675635040443830593798, 12301777316059025283613106700, 120545445185882926234784081616546, 1543421856441404929844846263740167376
Offset: 1

Views

Author

Eric W. Weisstein, Jul 27 2017

Keywords

Crossrefs

Programs

  • Mathematica
    c[n_, k_, i_, j_, p_]:=Binomial[n, k] Binomial[n, i + p] Binomial[n, j + p] Binomial[k, i] Binomial[k - i, j] k!*(i + p)!*(j + p)!*2^(k - i - j)*Binomial[p + i + j - 1, k - 1](1 + n - k); a[n_]:=3*Sum[Sum[Sum[Sum[c[n, k, i, j, p], {p, k - i - j, n}], {j, 0, k - i}], {i, 0, k}], {k, n}]/2; Table[a[n], {n, 12}] (* Indranil Ghosh, Aug 14 2017, after PARI *)
  • PARI
    c(n, k, i, j, p) = {binomial(n, k)*binomial(n, i+p)*binomial(n, j+p)*binomial(k, i)
    * binomial(k-i, j)*k!*(i+p)!*(j+p)!*2^(k-i-j)*binomial(p+i+j-1, k-1)*(1+n-k)}
    a(n)={3*(sum(k=1, n, sum(i=0, k, sum(j=0, k-i, sum(p=k-i-j, n, c(n, k, i, j, p) )))))/2} \\ Andrew Howroyd, Aug 13 2017
    
  • Python
    from sympy import binomial, factorial
    def c(n, k, i, j, p): return binomial(n, k)*binomial(n, i + p)*binomial(n, j + p)*binomial(k, i)*binomial(k - i, j)*factorial(k)*factorial(i + p)*factorial(j + p)*2**(k - i - j)*binomial(p + i + j - 1, k - 1)*(1 + n - k)
    def a(n): return 3*sum([sum([sum([sum([c(n, k, i, j, p) for p in range(k - i - j, n + 1)]) for j in range(k - i + 1)]) for i in range(k + 1)]) for k in range(1, n + 1)])/2
    print([a(n) for n in range(1, 13)]) # Indranil Ghosh, Aug 14 2017, after PARI

Extensions

Terms a(5) and beyond from Andrew Howroyd, Aug 13 2017

A297662 Number of chordless cycles in the complete tripartite graph K_{n,n,n}.

Original entry on oeis.org

0, 3, 27, 108, 300, 675, 1323, 2352, 3888, 6075, 9075, 13068, 18252, 24843, 33075, 43200, 55488, 70227, 87723, 108300, 132300, 160083, 192027, 228528, 270000, 316875, 369603, 428652, 494508, 567675, 648675, 738048, 836352, 944163, 1062075, 1190700
Offset: 1

Views

Author

Eric W. Weisstein, Jan 02 2018

Keywords

Comments

The only chordless cycles in a complete tripartite graph are cycles of length 4 confined to two of the partitions. - Andrew Howroyd, Jan 03 2018

Crossrefs

Programs

  • Mathematica
    Table[3 Binomial[n, 2]^2, {n, 20}]
    3 Binomial[Range[20], 2]^2
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 3, 27, 108, 300}, 20]
    SeriesCoefficient[Series[-3 x (1 + 4 x + x^2)/(-1 + x)^5, {x, 0, 20}], x]
  • PARI
    a(n) = 3*n^2*(n-1)^2/4; \\ Andrew Howroyd, Jan 03 2018

Formula

a(n) = 3*n^2*(n-1)^2/4 = 3*A000537(n). - Andrew Howroyd, Jan 03 2018
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: -3*x^2*(1 + 4*x + x^2)/(-1 + x)^5.

Extensions

a(6)-a(36) from Andrew Howroyd, Jan 03 2018
Showing 1-4 of 4 results.