cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A068665 a(1) = 3; a(n) = smallest palindromic multiple of a(n-1).

Original entry on oeis.org

3, 6, 66, 858, 6006, 66066, 858858, 222444222, 444888444, 21354645312, 21375999957312, 211643775577346112, 211432343445544343234112, 21354666687999978666645312, 211432554877887788778455234112, 211221333755564778877465557333122112
Offset: 1

Views

Author

Amarnath Murthy, Mar 01 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 3; a[n_] := a[n] = Block[{k = 2}, While[k*a[n - 1] != ToExpression[ StringReverse[ ToString[k*a[n - 1]]]], k++ ]; k*a[n - 1]]; Table[a[n], {n, 1, 16}]
    nxt[n_]:=Module[{k=2},While[k*n!=IntegerReverse[k*n],k++];k*n]; NestList[ nxt,3,15] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 14 2016 *)

Extensions

More terms from David W. Wilson; edited by Patrick De Geest, Mar 30 2002
a(16) from Giovanni Resta, Sep 22 2019

A068664 a(1) = 1, a(n) = smallest palindromic multiple of a(n-1).

Original entry on oeis.org

1, 2, 4, 8, 88, 616, 6776, 88088, 616616, 232464232, 21154245112, 232696696232, 21175399357112, 21154245133154245112, 232696696464696696232, 21175399378287399357112, 63386501441764911946714410568336
Offset: 1

Views

Author

Amarnath Murthy, Mar 01 2002

Keywords

Crossrefs

A068667 (from a(3) on) and this sequence (from a(6) on) coincide.

Programs

  • Mathematica
    a=1; Print[a]; For[n = 2, n <= 15, n++, {an = a; k = 2; str = ToString[k*an]; rstr = StringReverse[str]; While[str != rstr, {k = k + 1; str = ToString[k*an]; rstr = StringReverse[str]; If[k*an > 10^20, {Print["Too big"]; Abort[]}]}]; a := k*an; Print[k, " ", a];}]
    spm[n_]:=Module[{k=2},While[!PalindromeQ[k*n],k++];k*n]; NestList[spm,1,15] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 02 2019 *)

Extensions

Extended and edited by John W. Layman, Mar 18 2002
Last two terms from David W. Wilson and Patrick De Geest, Mar 30 2002

A068666 a(1) = 5; a(n) = smallest palindromic multiple of a(n-1).

Original entry on oeis.org

5, 55, 5005, 55055, 50155105, 5065665605, 50155155155105, 5464353998993534645, 541025148469303964841520145, 513016415223221833242338122322514610315
Offset: 1

Views

Author

Amarnath Murthy, Mar 01 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 5; a[n_] := a[n] = Block[{k = 2}, While[k*a[n - 1] != ToExpression[ StringReverse[ ToString[k*a[n - 1]]]], k++ ]; k*a[n - 1]]; Table[a[n], {n, 1, 9}]
    spm[n_]:=Module[{k=2},While[!PalindromeQ[k*n],k++];k*n]; NestList[spm,5,10] (* Harvey P. Dale, Nov 10 2022 *)

Extensions

Corrected and extended by David W. Wilson and Patrick De Geest, Mar 30 2002
a(10) from John Gustaf Stebbins, Sep 17 2008

A068667 a(1) = 7; a(n) = smallest palindromic multiple of a(n-1).

Original entry on oeis.org

7, 77, 616, 6776, 88088, 616616, 232464232, 21154245112, 232696696232, 21175399357112, 21154245133154245112, 232696696464696696232, 21175399378287399357112, 63386501441764911946714410568336
Offset: 1

Views

Author

Amarnath Murthy, Mar 01 2002

Keywords

Crossrefs

Cf. A068664 (from a(6) on) and this sequence (from a(3) on) coincide.

Programs

  • Mathematica
    a[1] = 7; a[n_] := a[n] = Block[{k = 2}, While[k*a[n - 1] != ToExpression[ StringReverse[ ToString[k*a[n - 1]]]], k++ ]; k*a[n - 1]]; Table[a[n], {n, 1, 14}]
    NestList[Module[{k=2},While[!PalindromeQ[k #],k++];k #]&,7,10] (* The program generates the first 11 terms of the sequence. *) (* Harvey P. Dale, Feb 07 2025 *)

Extensions

Last two terms from David W. Wilson, Sascha Kurz and edited by Patrick De Geest, Mar 30 2002

A068668 a(1) = 9; a(n) = smallest palindromic multiple of a(n-1).

Original entry on oeis.org

9, 99, 1881, 171171, 1882881, 306909603, 11355655311, 1033364633301, 1034397997934301, 10241574577547514201, 10231343244544544234313201, 112544775689989986577445211, 1023144555797698967975554413201, 102221350448336861989168633844053122201, 11233003103852144358833233885344125830130033211
Offset: 1

Views

Author

Amarnath Murthy, Mar 01 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 9; a[n_] := a[n] = Block[{k = 2}, While[k*a[n - 1] != ToExpression[ StringReverse[ ToString[k*a[n - 1]]]], k++ ]; k*a[n - 1]]; Table[a[n], {n, 1, 13}] (* Robert G. Wilson v, Apr 19 2002 *)

Extensions

More terms from Sascha Kurz, Mar 27 2002
Edited by N. J. A. Sloane, Apr 19 2007
a(14)-a(15) from Giovanni Resta, Sep 25 2019
Showing 1-5 of 5 results.