A070088 Number of integer-sided triangles with perimeter n and prime sides.
0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 2, 0, 1, 0, 1, 0, 1, 1, 2, 0, 3, 1, 3, 0, 2, 0, 2, 0, 3, 1, 3, 0, 5, 1, 5, 0, 4, 0, 3, 0, 5, 1, 5, 0, 4, 0, 4, 0, 2, 0, 3, 0, 5, 1, 3, 0, 6, 1, 8, 0, 5, 0, 5, 0, 4, 0, 3, 0, 5, 1, 6, 0, 6, 0, 4, 0, 7, 1, 7, 0, 9, 1, 10, 0
Offset: 1
Keywords
Examples
For n=15 there are A005044(15)=7 integer triangles: [1,7,7], [2,6,7], [3,5,7], [3,6,6], [4,4,7], [4,5,6] and [5,5,5]: two of them consist of primes, therefore a(15)=2.
Links
- R. Zumkeller, Integer-sided triangles
Crossrefs
Programs
-
Mathematica
triangleQ[sides_] := With[{s = Total[sides]/2}, AllTrue[sides, # < s&]]; a[n_] := Select[IntegerPartitions[n, {3}, Select[Range[Ceiling[n/2]], PrimeQ]], triangleQ] // Length; Array[a, 90] (* Jean-François Alcover, Jul 09 2017 *) Table[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[n - i - k] - PrimePi[n - i - k - 1]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 13 2019 *)