A070092 Number of isosceles integer triangles with perimeter n and prime side lengths.
0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 2, 0, 2, 1, 2, 0, 1, 0, 2, 0, 1, 1, 2, 0, 3, 1, 3, 0, 2, 0, 3, 0, 1, 1, 3, 0, 3, 0, 2, 0, 1, 0, 3, 0, 1, 1, 2, 0, 3, 1, 4, 0, 2, 0, 4, 0, 1, 0, 1, 0, 4, 1, 3, 0, 2, 0, 3, 0, 1, 1, 3, 0, 4, 1, 4, 0
Offset: 1
Keywords
Examples
For n=17 there are A005044(17)=8 integer triangles: [1,8,8], [2,7,8], [3,6,8], [3,7,7], [4,5,8], [4,6,7], [5,5,7] and [5,6,6]: four are isosceles: [1<8=8], [3<7=7], [5=5<7] and [5<6=6], but only two of them consist of primes, therefore a(17)=2.
Links
- R. Zumkeller, Integer-sided triangles
Programs
-
Mathematica
Table[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[n - i - k] - PrimePi[n - i - k - 1]) (KroneckerDelta[i, k] + KroneckerDelta[i, n - i - k] - KroneckerDelta[k, n - i - k]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 14 2019 *)