cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A070093 Number of acute integer triangles with perimeter n.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 4, 3, 5, 4, 5, 5, 5, 6, 6, 6, 7, 7, 9, 8, 10, 9, 10, 10, 11, 12, 12, 12, 14, 13, 16, 14, 17, 16, 17, 18, 18, 20, 20, 20, 22, 22, 24, 23, 25, 26, 26, 27, 28, 30, 30, 29, 32, 31, 35, 33, 36, 36, 38, 39, 40, 40
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

An integer triangle [A070080(k) <= A070081(k) <= A070082(k)] is acute iff A070085(k) > 0.

Examples

			For n=9 there are A005044(9)=3 integer triangles: [1,4,4], [2,3,4] and [3,3,3]; two of them are acute, as 2^2+3^2<16=4^2, therefore a(9)=2.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(1 - Sign[Floor[(n - i - k)^2/(i^2 + k^2)]]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 12 2019 *)

Formula

a(n) = A005044(n) - A070101(n) - A024155(n);
a(n) = A042154(n) + A070098(n).
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} (1-sign(floor((n-i-k)^2/(i^2+k^2)))) * sign(floor((i+k)/(n-i-k+1))). - Wesley Ivan Hurt, May 12 2019

A070088 Number of integer-sided triangles with perimeter n and prime sides.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 2, 0, 1, 0, 1, 0, 1, 1, 2, 0, 3, 1, 3, 0, 2, 0, 2, 0, 3, 1, 3, 0, 5, 1, 5, 0, 4, 0, 3, 0, 5, 1, 5, 0, 4, 0, 4, 0, 2, 0, 3, 0, 5, 1, 3, 0, 6, 1, 8, 0, 5, 0, 5, 0, 4, 0, 3, 0, 5, 1, 6, 0, 6, 0, 4, 0, 7, 1, 7, 0, 9, 1, 10, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			For n=15 there are A005044(15)=7 integer triangles: [1,7,7], [2,6,7], [3,5,7], [3,6,6], [4,4,7], [4,5,6] and [5,5,5]: two of them consist of primes, therefore a(15)=2.
		

Crossrefs

Programs

  • Mathematica
    triangleQ[sides_] := With[{s = Total[sides]/2}, AllTrue[sides, # < s&]];
    a[n_] := Select[IntegerPartitions[n, {3}, Select[Range[Ceiling[n/2]], PrimeQ]], triangleQ] // Length; Array[a, 90] (* Jean-François Alcover, Jul 09 2017 *)
    Table[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[n - i - k] - PrimePi[n - i - k - 1]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 13 2019 *)

Formula

a(n) = A070090(n) + A070092(n) = A070095(n) + A070103(n).
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * c(i) * c(k) * c(n-i-k), where c = A010051. - Wesley Ivan Hurt, May 13 2019

A070100 Number of integer triangles with perimeter n and prime side lengths which are acute and isosceles.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 2, 0, 1, 0, 2, 0, 1, 1, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 1, 1, 2, 0, 3, 0, 2, 0, 1, 0, 3, 0, 1, 1, 2, 0, 2, 1, 3, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 1, 3, 0, 2, 0, 3, 0, 0, 1, 3, 0, 3, 1, 3, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Crossrefs

A070097 Number of integer triangles with perimeter n and prime side lengths which are both acute and scalene.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Crossrefs

A070120 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an acute integer triangle with prime side lengths.

Original entry on oeis.org

3, 6, 9, 16, 22, 34, 35, 43, 46, 63, 84, 109, 124, 159, 170, 189, 201, 234, 240, 286, 297, 350, 352, 382, 410, 450, 478, 479, 515, 527, 544, 597, 629, 688, 708, 799, 811, 817, 868, 900, 911, 981, 1021, 1033, 1105, 1153, 1262
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(6)=34: [A070080(34), A070081(34), A070082(34)]=[5,5,5], A070085(34)=5^2+5^2-5^2=25>0.
		

Crossrefs

Showing 1-5 of 5 results.