cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A070112 Numbers n such that [A070080(n), A070081(n), A070082(n)] is a scalene integer triangle.

Original entry on oeis.org

8, 13, 17, 20, 21, 25, 29, 30, 33, 36, 37, 41, 42, 44, 45, 49, 50, 53, 56, 57, 59, 60, 62, 66, 67, 69, 70, 74, 75, 77, 78, 79, 80, 83, 86, 87, 89, 90, 92, 96, 97, 99, 100, 101, 102, 105, 106, 110, 111, 113, 114, 115, 116, 119, 122
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(17)=50: [A070080(50), A070081(50), A070082(50)]=[4<6<8].
		

Crossrefs

Programs

  • Mathematica
    m = 55 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1] & // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    Position[triangles, {a_, b_, c_} /; a < b < c] // Flatten (* Jean-François Alcover, Oct 12 2021 *)

A070111 Numbers k such that [A070080(k), A070081(k), A070082(k)] is an integer triangle with prime sides.

Original entry on oeis.org

3, 5, 6, 9, 14, 16, 22, 30, 34, 35, 43, 46, 63, 84, 101, 109, 124, 133, 153, 159, 163, 170, 189, 193, 201, 234, 240, 286, 297, 328, 334, 350, 352, 382, 392, 410, 444, 450, 454, 472, 478, 479, 515, 519, 527, 542, 544, 597, 603, 621, 629, 688, 708, 714, 771, 777, 795, 799, 811, 817, 868, 878, 900, 907, 911
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			35 is a term: [A070080(35), A070081(35), A070082(35)]=[2,7,7].
		

Crossrefs

Programs

  • Mathematica
    m = 50 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1] & // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    Position[triangles, {a_, b_, c_} /; AllTrue[{a, b, c}, PrimeQ]] // Flatten (* Jean-François Alcover, Oct 04 2021 *)

Extensions

More terms from Jean-François Alcover, Oct 04 2021

A070090 Number of scalene integer triangles with perimeter n and prime side lengths.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0, 0, 0, 4, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 0, 4, 0, 1, 0, 3, 0, 4, 0, 3, 0, 1, 0, 3, 0, 2, 0, 1, 0, 3, 0, 4, 0, 1, 0, 6, 0, 4, 0, 5, 0, 6, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			For n=15 there are A005044(15)=7 integer triangles: [1,7,7], [2,6,7], [3,5,7], [3,6,6], [4,4,7], [4,5,6] and [5,5,5]: three are scalene: [2<6<7], [3<5<7] and [4<5<6], but only one consists of primes, therefore a(15)=1.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[n - i - k] - PrimePi[n - i - k - 1])*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k + 1, Floor[(n - k - 1)/2]}], {k, Floor[(n - 1)/3]}], {n, 100}] (* Wesley Ivan Hurt, May 13 2019 *)

Formula

a(n) = A070088(n) - A070092(n).
a(n) = Sum_{k=1..floor((n-1)/3)} Sum_{i=k+1..floor((n-k-1)/2)} sign(floor((i+k)/(n-i-k+1))) * A010051(i)A010051(k)%20*%20A010051(n-i-k).%20-%20_Wesley%20Ivan%20Hurt">* A010051(k) * A010051(n-i-k). - _Wesley Ivan Hurt, May 13 2019
Showing 1-3 of 3 results.