cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A070111 Numbers k such that [A070080(k), A070081(k), A070082(k)] is an integer triangle with prime sides.

Original entry on oeis.org

3, 5, 6, 9, 14, 16, 22, 30, 34, 35, 43, 46, 63, 84, 101, 109, 124, 133, 153, 159, 163, 170, 189, 193, 201, 234, 240, 286, 297, 328, 334, 350, 352, 382, 392, 410, 444, 450, 454, 472, 478, 479, 515, 519, 527, 542, 544, 597, 603, 621, 629, 688, 708, 714, 771, 777, 795, 799, 811, 817, 868, 878, 900, 907, 911
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			35 is a term: [A070080(35), A070081(35), A070082(35)]=[2,7,7].
		

Crossrefs

Programs

  • Mathematica
    m = 50 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1] & // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    Position[triangles, {a_, b_, c_} /; AllTrue[{a, b, c}, PrimeQ]] // Flatten (* Jean-François Alcover, Oct 04 2021 *)

Extensions

More terms from Jean-François Alcover, Oct 04 2021

A070115 Numbers m such that [A070080(m), A070081(m), A070082(m)] is an isosceles integer triangle.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 18, 19, 22, 23, 24, 26, 27, 28, 31, 32, 34, 35, 38, 39, 40, 43, 46, 47, 48, 51, 52, 54, 55, 58, 61, 63, 64, 65, 68, 71, 72, 73, 76, 81, 82, 84, 85, 88, 91, 93, 94, 95, 98, 103, 104, 107, 108
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			26 is a term because [A070080(26), A070081(26), A070082(26)] = [4=4<6].
		

Crossrefs

Programs

  • Mathematica
    m = 55 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    Position[triangles, {a_, a_, b_} | {a_, b_, b_}] // Flatten (* Jean-François Alcover, Oct 12 2021 *)

A070092 Number of isosceles integer triangles with perimeter n and prime side lengths.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 2, 0, 2, 1, 2, 0, 1, 0, 2, 0, 1, 1, 2, 0, 3, 1, 3, 0, 2, 0, 3, 0, 1, 1, 3, 0, 3, 0, 2, 0, 1, 0, 3, 0, 1, 1, 2, 0, 3, 1, 4, 0, 2, 0, 4, 0, 1, 0, 1, 0, 4, 1, 3, 0, 2, 0, 3, 0, 1, 1, 3, 0, 4, 1, 4, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			For n=17 there are A005044(17)=8 integer triangles: [1,8,8], [2,7,8], [3,6,8], [3,7,7], [4,5,8], [4,6,7], [5,5,7] and [5,6,6]: four are isosceles: [1<8=8], [3<7=7], [5=5<7] and [5<6=6], but only two of them consist of primes, therefore a(17)=2.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[n - i - k] - PrimePi[n - i - k - 1]) (KroneckerDelta[i, k] + KroneckerDelta[i, n - i - k] - KroneckerDelta[k, n - i - k]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 14 2019 *)

Formula

a(n) = A070088(n) - A070090(n).
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * ([i = k] + [i = n-i-k] - [k = n-i-k]) * A010051(i) * A010051(k) * A010051(n-i-k), where [] is the Iverson bracket. - Wesley Ivan Hurt, May 14 2019
Showing 1-3 of 3 results.