cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A070127 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an obtuse integer triangle.

Original entry on oeis.org

5, 8, 13, 14, 20, 21, 25, 26, 29, 30, 32, 36, 37, 41, 42, 44, 49, 50, 52, 56, 57, 59, 61, 62, 66, 67, 69, 74, 75, 77, 78, 79, 80, 82, 86, 87, 89, 91, 96, 97, 99, 100, 101, 102, 104, 105, 110, 111, 113, 115, 118, 122, 123, 125, 126, 127
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(10)=30: [A070080(30), A070081(30), A070082(30)]=[3,5,7], A070085(30)=3^2+5^2-7^2=9+25-49=-15<0.
		

Crossrefs

Programs

  • Mathematica
    m = 55 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]]&];
    Position[triangles, {a_, b_, c_} /; a^2 + b^2 - c^2 < 0] // Flatten (* Jean-François Alcover, Oct 11 2021 *)

A070112 Numbers n such that [A070080(n), A070081(n), A070082(n)] is a scalene integer triangle.

Original entry on oeis.org

8, 13, 17, 20, 21, 25, 29, 30, 33, 36, 37, 41, 42, 44, 45, 49, 50, 53, 56, 57, 59, 60, 62, 66, 67, 69, 70, 74, 75, 77, 78, 79, 80, 83, 86, 87, 89, 90, 92, 96, 97, 99, 100, 101, 102, 105, 106, 110, 111, 113, 114, 115, 116, 119, 122
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(17)=50: [A070080(50), A070081(50), A070082(50)]=[4<6<8].
		

Crossrefs

Programs

  • Mathematica
    m = 55 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1] & // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    Position[triangles, {a_, b_, c_} /; a < b < c] // Flatten (* Jean-François Alcover, Oct 12 2021 *)

A070111 Numbers k such that [A070080(k), A070081(k), A070082(k)] is an integer triangle with prime sides.

Original entry on oeis.org

3, 5, 6, 9, 14, 16, 22, 30, 34, 35, 43, 46, 63, 84, 101, 109, 124, 133, 153, 159, 163, 170, 189, 193, 201, 234, 240, 286, 297, 328, 334, 350, 352, 382, 392, 410, 444, 450, 454, 472, 478, 479, 515, 519, 527, 542, 544, 597, 603, 621, 629, 688, 708, 714, 771, 777, 795, 799, 811, 817, 868, 878, 900, 907, 911
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			35 is a term: [A070080(35), A070081(35), A070082(35)]=[2,7,7].
		

Crossrefs

Programs

  • Mathematica
    m = 50 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1] & // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    Position[triangles, {a_, b_, c_} /; AllTrue[{a, b, c}, PrimeQ]] // Flatten (* Jean-François Alcover, Oct 04 2021 *)

Extensions

More terms from Jean-François Alcover, Oct 04 2021

A070105 Number of integer triangles with perimeter n and prime side lengths which are obtuse and scalene.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 0, 0, 3, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 3, 0, 1, 0, 3, 0, 4, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 3, 0, 1, 0, 5, 0, 4, 0, 5, 0, 5, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = 0 if n is even. - Robert Israel, Jul 26 2024

Crossrefs

Programs

  • Maple
    f:= proc(n) local a,b,q,bmin,bmax,t;
      t:= 0;
      if n::even then return 0 fi;
      for a from 1 to n/3 by 2 do
        if not isprime(a) then next fi;
        bmin:= max(a+1,(n+1)/2-a); if bmin::even then bmin:= bmin+1 fi;
        q:= (n^2-2*n*a)/(2*(n-a));
        if q::integer then bmax:= min((n-a)/2, q-1) else bmax:= min((n-a)/2, floor(q)) fi;
        t:= t + nops(select(b -> isprime(b) and isprime(n-a-b), [seq(b,b=bmin .. bmax,2)]))
      od;
      t
    end proc:
    map(f, [$1..100]); # Robert Israel, Jul 26 2024

A070114 Numbers n such that [A070080(n), A070081(n), A070082(n)] is a scalene integer triangle with prime side lengths.

Original entry on oeis.org

30, 101, 153, 193, 240, 328, 334, 392, 444, 454, 519, 544, 603, 621, 771, 777, 795, 799, 878, 911, 1005, 1123, 1135, 1262, 1508, 1526, 1538, 1568, 1694, 1818, 1848, 1858, 1999, 2023, 2037, 2066, 2193, 2223, 2253, 2454
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(2)=101: [A070080(101), A070081(101), A070082(101)]=[5<7<11].
		

Crossrefs

A070129 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an obtuse integer triangle with prime side lengths.

Original entry on oeis.org

5, 14, 30, 101, 133, 153, 163, 193, 328, 334, 392, 444, 454, 472, 519, 542, 603, 621, 714, 771, 777, 795, 878, 907, 1005, 1123, 1135, 1508, 1526, 1538, 1694, 1818, 1848, 1858, 1888, 1999, 2023, 2037, 2064, 2066, 2193
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(3)=30: [A070080(30), A070081(30), A070082(30)]=[3,5,7], A070085(30)=3^2+5^2-7^2=9+25-49=-15>0.
		

Crossrefs

A070130 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an obtuse scalene integer triangle.

Original entry on oeis.org

8, 13, 20, 21, 25, 29, 30, 36, 37, 41, 42, 44, 49, 50, 56, 57, 59, 62, 66, 67, 69, 74, 75, 77, 78, 79, 80, 86, 87, 89, 96, 97, 99, 100, 101, 102, 105, 110, 111, 113, 115, 122, 123, 125, 126, 127, 128, 130, 131, 138, 139, 141, 143
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(20)=67: [A070080(67), A070081(67), A070082(67)]=[4<7<9], A070085(67)=4^2+7^2-9^2=16+49-81=-16<0.
		

Crossrefs

Showing 1-7 of 7 results.