cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070157 Numbers k such that k-1, k+1, k^2+1, k^4+1 and k^8+1 are all prime numbers.

Original entry on oeis.org

4, 19380, 9443670, 11054760, 15992070, 22482330, 32557380, 51102510, 57978840, 60549240, 64671570, 84045960, 89757960, 111316170, 112821690, 116433510, 171124380, 171418650, 183082350, 196694760, 197021160, 241803240, 266498460
Offset: 1

Views

Author

Labos Elemer, Apr 23 2002

Keywords

Examples

			19380 is a term since 19380-1 = 19379, 19380+1 = 19381, 19380^2+1 = 375584401, 19380^4+1 = 141063641523360001 and 19380^8+1 = 19898950959831015581425689600000001 are primes.
		

Crossrefs

Subsequence of A070155 and A070156.

Programs

  • Mathematica
    Do[p = Prime[n] + 1; If[ PrimeQ[p + 1] && PrimeQ[1 + p^2] && PrimeQ[1 + p^4] && PrimeQ[1 + p^8], Print[p]], {n, 1, 115000000}]
    Select[Range[2665*10^5],AllTrue[{#-1,#+1,#^2+1,#^4+1,#^8+1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 03 2019 *)
  • PARI
    is(k) = isprime(k-1) && isprime(k+1) && isprime(k^2+1) && isprime(k^4+1) && isprime(k^8+1); \\ Amiram Eldar, Jun 26 2024

Extensions

Edited and extended by Robert G. Wilson v, May 04 2002