A070025 At these values of k, the 1st, 2nd, 3rd and 4th cyclotomic polynomials all give prime numbers.
6, 150, 2730, 9000, 9240, 35280, 41760, 43050, 53280, 65520, 76650, 96180, 111030, 148200, 197370, 207480, 213360, 226380, 254280, 264600, 309480, 332160, 342450, 352740, 375450, 381990, 440550, 458790, 501030, 527070, 552030, 642360, 660810
Offset: 1
Examples
For k = 6: 5, 7, 43 and 37 are prime values of the first 4 cyclotomic polynomials.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
lst={};Do[If[PrimeQ[n-1]&&PrimeQ[n+1]&&PrimeQ[1+n+n^2]&&PrimeQ[1+n^2], AppendTo[lst, n]], {n, 10^6}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 19 2008 *) Select[Range[10^6], Function[k, AllTrue[Cyclotomic[#, k] & /@ Range@ 4, PrimeQ]]] (* Michael De Vlieger, Jul 18 2017 *)
-
PARI
is(k) = isprime(k-1) && isprime(k+1) && isprime(k^2+1) && isprime(k^2+k+1); \\ Amiram Eldar, Sep 24 2024
Comments