cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070169 Rounded total surface area of a regular tetrahedron with edge length n.

Original entry on oeis.org

0, 2, 7, 16, 28, 43, 62, 85, 111, 140, 173, 210, 249, 293, 339, 390, 443, 501, 561, 625, 693, 764, 838, 916, 998, 1083, 1171, 1263, 1358, 1457, 1559, 1665, 1774, 1886, 2002, 2122, 2245, 2371, 2501, 2634, 2771, 2912, 3055, 3203, 3353, 3507, 3665, 3826, 3991
Offset: 0

Views

Author

Rick L. Shepherd, Apr 24 2002

Keywords

Comments

a(n) is the integer k that minimizes |k/n^2 - sqrt(3)|. - Clark Kimberling, Oct 11 2017

Examples

			a(3)=16 because round(3^2*sqrt(3)) = round(9*1.73205...) = round(15.5884...) = 16.
		

References

  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, pp. 10-11.

Crossrefs

Cf. A033581 (cube), A071396 (octahedron), A071397 (dodecahedron), A071398 (icosahedron), A071399 (volume of tetrahedron).

Programs

  • Magma
    [Round(n^2 * Sqrt(3)): n in [0..50]]; // Vincenzo Librandi, May 21 2011
    
  • Mathematica
    Round[Sqrt[3]#]&/@(Range[0,50]^2) (* Harvey P. Dale, Sep 24 2012 *)
  • PARI
    for(n=0,100,print1(round(n^2*sqrt(3)),","))
    
  • Python
    from math import isqrt
    def A070169(n): return (m:=isqrt(k:=3*n**4))+(k-m*(m+1)>=1) # Chai Wah Wu, Jun 19 2024

Formula

a(n) = round(n^2 * sqrt(3)).
a(n) = A000194(3*n^4). - Christian Krause, Aug 04 2021; corrected by Chai Wah Wu, Jun 19 2024