A070182 Primes p such that x^5 = 2 has a solution mod p, but x^(5^2) = 2 has no solution mod p.
151, 251, 3251, 3301, 4751, 8501, 11251, 11701, 13751, 14251, 14951, 15551, 16451, 17401, 18401, 21401, 21601, 24251, 28351, 28901, 32251, 32401, 32801, 34301, 36151, 36451, 37201, 40351, 42451, 42701, 44201, 45751, 46051, 46451, 46901
Offset: 1
Programs
-
Magma
[p: p in PrimesUpTo(50000) | not exists{x: x in ResidueClassRing(p) | x^25 eq 2} and exists{x: x in ResidueClassRing(p) | x^5 eq 2}]; // Vincenzo Librandi, Sep 21 2012
-
PARI
forprime(p=2,47000,x=0; while(x
-
PARI
ok(p, r, k1, k2)={ if ( Mod(r,p)^((p-1)/gcd(k1,p-1))!=1, return(0) ); if ( Mod(r,p)^((p-1)/gcd(k2,p-1))==1, return(0) ); return(1); } forprime(p=2,10^5, if (ok(p,2,5,5^2),print1(p,", "))); /* Joerg Arndt, Sep 21 2012 */