A070183 Primes p such that x^6 = 2 has a solution mod p, but x^(6^2) = 2 has no solution mod p.
17, 41, 137, 401, 433, 449, 457, 521, 569, 641, 761, 809, 857, 919, 929, 953, 977, 1361, 1409, 1423, 1657, 1697, 1999, 2017, 2081, 2143, 2153, 2287, 2297, 2417, 2609, 2633, 2729, 2753, 2777, 2791, 2801, 2897, 2953, 3041, 3209, 3329, 3457, 3593, 3617
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(5000) | not exists{x: x in ResidueClassRing(p) | x^36 eq 2} and exists{x: x in ResidueClassRing(p) | x^6 eq 2}]; // Vincenzo Librandi, Sep 21 2012
-
Maple
select(p -> isprime(p) and [msolve(x^6=2,p)]<>[] and [msolve(x^36=2,p)]=[] , [seq(i,i=3..10^4,2)]); # Robert Israel, May 13 2018
-
PARI
forprime(p=2,3700,x=0; while(x
-
PARI
ok(p, r, k1, k2)={ if ( Mod(r,p)^((p-1)/gcd(k1,p-1))!=1, return(0) ); if ( Mod(r,p)^((p-1)/gcd(k2,p-1))==1, return(0) ); return(1); } forprime(p=2,10^4, if (ok(p,2,6,6^2),print1(p,", "))); /* Joerg Arndt, Sep 21 2012 */
-
Python
from itertools import count, islice from sympy import nextprime, is_nthpow_residue def A070183_gen(startvalue=2): # generator of terms >= startvalue p = max(nextprime(startvalue-1),2) while True: if is_nthpow_residue(2,6,p) and not is_nthpow_residue(2,36,p): yield p p = nextprime(p) A070183_list = list(islice(A070183_gen(),20)) # Chai Wah Wu, May 02 2024