cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070186 Primes p such that x^10 = 2 has a solution mod p, but x^(10^2) = 2 has no solution mod p.

Original entry on oeis.org

17, 97, 137, 151, 193, 241, 313, 409, 433, 449, 457, 569, 641, 673, 769, 809, 857, 929, 953, 977, 1009, 1129, 1297, 1409, 1489, 1657, 1697, 1873, 1993, 2017, 2137, 2153, 2297, 2377, 2417, 2609, 2617, 2633, 2713, 2729, 2753, 2777, 2897, 2953, 3169, 3209
Offset: 1

Views

Author

Klaus Brockhaus, Apr 29 2002

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3500) | not exists{x: x in ResidueClassRing(p) | x^100 eq 2} and exists{x: x in ResidueClassRing(p) | x^10 eq 2}]; // Vincenzo Librandi, Sep 21 2012
    
  • PARI
    forprime(p=2,3300,x=0; while(x
    				
  • PARI
    ok(p, r, k1, k2)={
        if (  Mod(r,p)^((p-1)/gcd(k1,p-1))!=1, return(0) );
        if (  Mod(r,p)^((p-1)/gcd(k2,p-1))==1, return(0) );
        return(1);
    }
    forprime(p=2,10^5, if (ok(p,2,10,10^2),print1(p,", "))); \\ A070186
    /* Joerg Arndt, Sep 21 2012 */