A070218 a(1) = 2; a(n) is the smallest prime greater than the sum of all previous terms.
2, 3, 7, 13, 29, 59, 127, 241, 487, 971, 1949, 3889, 7789, 15569, 31139, 62297, 124577, 249181, 498331, 996689, 1993357, 3986711, 7973419, 15946841, 31893713, 63787391, 127574789, 255149591, 510299171, 1020598339, 2041196683, 4082393387, 8164786771, 16329573527
Offset: 1
Keywords
Links
- Vojtech Strnad, Table of n, a(n) for n = 1..2000 (first 200 terms from Zak Seidov)
Programs
-
Maple
s:= proc(n) option remember; `if`(n<1, 0, s(n-1)+a(n)) end: a:= proc(n) option remember; `if`(n<1, 0, nextprime(s(n-1))) end: seq(a(n), n=1..35); # Alois P. Heinz, Sep 21 2021
-
Mathematica
tb[0]={} tb[x_] := Union[tb[x-1], m[x]] m[x_] := {Prime[1+PrimePi[Apply[Plus, tb[x-1]]]]} Flatten[Table[m[w], {w, 1, 10}]] (* Labos Elemer, May 08 2002 *) bb={2};s=2;Do[p=Prime[PrimePi[s]+1];s=s+p;bb=Append[bb, p], {k, 32}];bb (Seidov) Nest[Append[#,NextPrime[Total[#]]]&,{2},30] (* Zak Seidov, Oct 28 2011 *)
-
PARI
print1(s=2);for(n=2,99,print1(", "t=nextprime(s+1));s+=t)
-
Python
from sympy import nextprime def aupton(terms): alst, s = [2], 2 while len(alst) < terms: p = nextprime(s) alst.append(p) s += p return alst print(aupton(31)) # Michael S. Branicky, Sep 21 2021
Extensions
More terms from Labos Elemer, May 08 2002
Corrected by Zak Seidov, May 21 2005
Comments