A070243 a(n) = Card{ k, phi(k) <= n }.
2, 5, 5, 9, 9, 13, 13, 18, 18, 20, 20, 26, 26, 26, 26, 32, 32, 36, 36, 41, 41, 43, 43, 53, 53, 53, 53, 55, 55, 57, 57, 64, 64, 64, 64, 72, 72, 72, 72, 81, 81, 85, 85, 88, 88, 90, 90, 101, 101, 101, 101, 103, 103, 105, 105, 108, 108, 110, 110, 119, 119, 119, 119, 127, 127
Offset: 1
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 115-118.
- Gérald Tenenbaum and Jie Wu, Exercices corrigés de théorie analytique et probabiliste des nombres, Collection SMF, Cours spécialisés, Numero 2, pp. 78-79.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
- Matteo Caorsi and Sergio Cecotti, Geometric classification of 4d N=2 SCFTs, Journal of High Energy Physics, Vol. 2018 (2018), Article number 138; arXiv preprint, arXiv:1801.04542 [hep-th], 2018.
Programs
-
PARI
for(n=1,150,print1(sum(i=1,100*n,if(sign(eulerphi(i)-n)+1,0,1)+if((eulerphi(i)-n),0,1)),","))
-
PARI
list(nmax) = my(s = 0); for(n = 1, nmax, s += invphiNum(n); print1(s, ", ")); \\ Amiram Eldar, Dec 23 2024, using Max Alekseyev's invphi.gp
Formula
Limit_{n->oo} a(n)/n = zeta(2)*zeta(3)/zeta(6) = 1.943596436820759205057... = A082695.
From Benoit Cloitre, Apr 12 2003: (Start)
a(n) = Sum_{k=1..n} A014197(k).
a(n) = (zeta(2)*zeta(3)/zeta(6))*n + O(n*exp(-c*sqrt(log(n)))) for a suitable constant c > 0. (End)