cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070243 a(n) = Card{ k, phi(k) <= n }.

Original entry on oeis.org

2, 5, 5, 9, 9, 13, 13, 18, 18, 20, 20, 26, 26, 26, 26, 32, 32, 36, 36, 41, 41, 43, 43, 53, 53, 53, 53, 55, 55, 57, 57, 64, 64, 64, 64, 72, 72, 72, 72, 81, 81, 85, 85, 88, 88, 90, 90, 101, 101, 101, 101, 103, 103, 105, 105, 108, 108, 110, 110, 119, 119, 119, 119, 127, 127
Offset: 1

Views

Author

Benoit Cloitre, May 11 2002

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 115-118.
  • Gérald Tenenbaum and Jie Wu, Exercices corrigés de théorie analytique et probabiliste des nombres, Collection SMF, Cours spécialisés, Numero 2, pp. 78-79.

Crossrefs

Partial sums of A014197.

Programs

  • PARI
    for(n=1,150,print1(sum(i=1,100*n,if(sign(eulerphi(i)-n)+1,0,1)+if((eulerphi(i)-n),0,1)),","))
    
  • PARI
    list(nmax) = my(s = 0); for(n = 1, nmax, s += invphiNum(n); print1(s, ", ")); \\ Amiram Eldar, Dec 23 2024, using Max Alekseyev's invphi.gp

Formula

Limit_{n->oo} a(n)/n = zeta(2)*zeta(3)/zeta(6) = 1.943596436820759205057... = A082695.
From Benoit Cloitre, Apr 12 2003: (Start)
a(n) = Sum_{k=1..n} A014197(k).
a(n) = (zeta(2)*zeta(3)/zeta(6))*n + O(n*exp(-c*sqrt(log(n)))) for a suitable constant c > 0. (End)