cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070265 Odd powers: numbers n = m^e with e > 1 odd.

Original entry on oeis.org

1, 8, 27, 32, 64, 125, 128, 216, 243, 343, 512, 729, 1000, 1024, 1331, 1728, 2048, 2187, 2197, 2744, 3125, 3375, 4096, 4913, 5832, 6859, 7776, 8000, 8192, 9261, 10648, 12167, 13824, 15625, 16384, 16807, 17576, 19683, 21952, 24389, 27000
Offset: 1

Views

Author

Eric W. Weisstein, May 07 2002

Keywords

Crossrefs

Programs

  • Maple
    N:= 10^6: # to get all terms <= N
    {1,seq(seq(a^(2*k+1), k = 1 .. floor((log[a](N)-1)/2)),a=2..floor(N^(1/3)))};
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(%,list)); # Robert Israel, Apr 24 2015
  • Mathematica
    nn = 27000; Join[{1}, Union[Flatten[Table[n^i, {i, Prime[Range[2, PrimePi[Log[2, nn]]]]}, {n, 2, nn^(1/i)}]]]] (* T. D. Noe, Apr 19 2011 *)
  • PARI
    is(x)=p=ispower(x);x==1||(p>1&bitand(p,p-1)!=0) \\ Charles R Greathouse IV, Apr 20 2015; corrected by Jeppe Stig Nielsen, Jul 14 2015
    
  • PARI
    list(lim)=my(v=List([1])); forstep(e=3,log(lim)\log(2),2, for(n=2,sqrtnint(lim\1,e), listput(v,n^e))); Set(v) \\ Charles R Greathouse IV, Apr 20 2015
    
  • Python
    from sympy import mobius, integer_nthroot
    def A070265(n):
        def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(3,x.bit_length(),2)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 14 2024

Formula

a(n) ~ n^3. - Charles R Greathouse IV, Apr 20 2015
Sum_{n>=1} 1/a(n) = 1 + Sum_{k>=1} mu(2*k+1)*(1-zeta(2*k+1)) = 1.2479294392... - Amiram Eldar, Dec 21 2020

Extensions

Name clarified by Charles R Greathouse IV, Oct 16 2015