A070281 Smallest prime which is the sum of n consecutive primes, or 0 if no such prime exists.
2, 5, 23, 17, 53, 41, 197, 0, 127, 0, 233, 197, 691, 281, 379, 0, 499, 0, 857, 0, 953, 0, 1151, 0, 1259, 0, 1583, 0, 2099, 0, 2399, 0, 2417, 0, 2579, 0, 2909, 0, 3803, 0, 3821, 0, 4217, 0, 4651, 0, 5107, 0, 5813, 0, 6829, 0, 6079, 0, 6599, 0, 14153, 0, 10091, 7699
Offset: 1
Keywords
Examples
a(60) = 7699 because Sum_{k=1..60} prime(k) = 7699 and 7699 is the smallest possible prime formed by summing 60 consecutive primes. - _Sean A. Irvine_, Jun 07 2024
Crossrefs
Cf. A070934.
Programs
-
Mathematica
f[n_] := Block[{k = 1, s},If[Mod[n, 2] == 0,s = Sum[Prime[i], {i, k, k + n - 1}];If[PrimeQ[s], s, 0],While[s = Sum[Prime[i], {i, k, k + n - 1}] ; ! PrimeQ[s], k++ ];s]];Table[f[n], {n, 65}] (* Ray Chandler, Sep 27 2006 *)
Extensions
Corrected and extended by Jim Nastos, Jun 15 2002
Extended by Ray Chandler, Sep 27 2006
a(60) corrected by Giovanni Resta, May 31 2017
Original a(60) restored by Sean A. Irvine, Jun 07 2024
Comments