A070289 Number of distinct values of multinomial coefficients ( n / (p1, p2, p3, ...) ) where (p1, p2, p3, ...) runs over all partitions of n.
1, 1, 2, 3, 5, 7, 11, 14, 20, 27, 36, 47, 64, 79, 102, 125, 157, 193, 243, 296, 366, 441, 538, 639, 773, 911, 1092, 1294, 1532, 1799, 2131, 2475, 2901, 3369, 3935, 4554, 5292, 6084, 7033, 8087, 9292, 10617, 12198, 13880, 15874, 18039, 20541, 23263, 26414, 29838
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..92
- George E. Andrews, Arnold Knopfmacher, and Burkhard Zimmermann, On the number of distinct multinomial coefficients, Journal of Number Theory 118 (2006), 15-30; arXiv preprint, arXiv:math/0509470 [math.CO], 2005.
- Sergei Viznyuk, C-Program, C-Program, local copy.
Programs
-
Maple
b:= proc(n,i) option remember; if n=0 then {1} elif i<1 then {} else {b(n, i-1)[], seq(map(x-> x*i!^j, b(n-i*j, i-1))[], j=1..n/i)} fi end: a:= n-> nops(b(n, n)): seq(a(n), n=0..50); # Alois P. Heinz, Aug 14 2012
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i<1, {}, Union[Join[b[n, i-1], Flatten[ Table[Function[{x}, x*i!^j] /@ b[n-i*j, i-1], {j, 1, n/i}]]]]]]; a[n_] := Length[b[n, n]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 23 2015, after Alois P. Heinz *)
-
Sage
def A070289(n): P = Partitions(n) M = set(multinomial(list(x)) for x in P) return len(M) [A070289(n) for n in range(20)] # Joerg Arndt, Aug 14 2012
Formula
Extensions
Terms a(n) for n >= 45 corrected by Joerg Arndt and Alois P. Heinz, Aug 14 2012