A325305
Irregular triangular array, read by rows: T(n,k) is the sum of the products of distinct multinomial coefficients (n_1 + n_2 + n_3 + ...)!/(n_1! * n_2! * n_3! * ...) taken k at a time, where (n_1, n_2, n_3, ...) runs over all integer partitions of n (n >= 0, 0 <= k <= A070289(n)).
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 2, 1, 10, 27, 18, 1, 47, 718, 4416, 10656, 6912, 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000, 1, 1602, 929171, 260888070, 39883405500, 3492052425000, 177328940580000, 5153150631600000, 82577533320000000, 669410956800000000, 2224399449600000000, 1632586752000000000, 1, 11271
Offset: 0
Triangle begins as follows:
[n=0]: 1, 1;
[n=1]: 1, 1;
[n=2]: 1, 3, 2;
[n=3]: 1, 10, 27, 18;
[n=4]: 1, 47, 718, 4416, 10656, 6912;
[n=5]: 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000;
...
For example, when n = 3, the integer partitions of 3 are 3, 1+2, 1+1+1, and the corresponding multinomial coefficients are 3!/3! = 1, 3!/(1!2!) = 3, and 3!/(1!1!1!) = 6. They are all distinct. Then T(n=3, k=0) = 1, T(n=3, k=1) = 1 + 3 + 6 = 10, T(n=3, k=2) = 1*3 + 1*6 + 3*6 = 27, and T(n=3, k=3) = 1*3*6 = 18.
Consider the list [1, 7, 21, 35, 42, 105, 140, 210, 420, 630, 840, 1260, 2520, 5040] of the A070289(7) = 15 - 1 = 14 distinct multinomial coefficients corresponding to the 15 integer partitions of 7. Then T(7,0) = 1, T(7,1) = 11271 (sum of the coefficients), T(7,2) = 46169368 (sum of products of every two different coefficients), T(7,3) = 92088653622 (sum of products of every three different coefficients), and so on. Finally, T(7,14) = 2372695722072874920960000000000 = product of these coefficients.
- Alois P. Heinz, Rows n = 0..15, flattened
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6), p. 248.
- Wikipedia, Partition (number theory).
Cf.
A000012 (column k=0),
A000041,
A005651,
A070289,
A212850,
A212851,
A212852,
A212853,
A212854,
A212855,
A212856,
A309951,
A309972,
A325308 (column k=1).
-
g:= proc(n, i) option remember; `if`(n=0 or i=1, [n!], [{map(x->
binomial(n, i)*x, g(n-i, min(n-i, i)))[], g(n, i-1)[]}[]])
end:
b:= proc(n, m) option remember; `if`(n=0, 1,
expand(b(n-1, m)*(g(m$2)[n]*x+1)))
end:
T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(nops(g(n$2)), n)):
seq(T(n), n=0..7); # Alois P. Heinz, Sep 05 2019
-
g[n_, i_] := g[n, i] = If[n == 0 || i == 1, {n!}, Union[Map[Function[x, Binomial[n, i] x], g[n - i, Min[n - i, i]]], g[n, i - 1]]];
b[n_, m_] := b[n, m] = If[n == 0, 1, b[n - 1, m] (g[m, m][[n]] x + 1)];
T[n_] := CoefficientList[b[Length[g[n, n]], n], x];
T /@ Range[0, 7] // Flatten (* Jean-François Alcover, May 06 2020, after Maple *)
A212855
T(n,k) = number of n X k arrays with rows being permutations of 0..k-1 and no column j greater than column j-1 in all rows (n, k >= 1).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 19, 7, 1, 1, 211, 163, 15, 1, 1, 3651, 8983, 1135, 31, 1, 1, 90921, 966751, 271375, 7291, 63, 1, 1, 3081513, 179781181, 158408751, 7225951, 45199, 127, 1, 1, 136407699, 53090086057, 191740223841, 21855093751, 182199871, 275563, 255, 1
Offset: 1
Some solutions for n=3 and k=4:
2 1 3 0 1 3 0 2 3 0 2 1 1 3 0 2 1 3 2 0
2 0 1 3 1 3 0 2 3 1 2 0 1 0 3 2 1 3 0 2
2 3 0 1 3 0 2 1 2 3 1 0 2 0 3 1 3 1 0 2
Table starts:
1 1 1 1 1 1 1
1 3 19 211 3651 90921 3081513
1 7 163 8983 966751 179781181 53090086057
1 15 1135 271375 158408751 191740223841 429966316953825
1 31 7291 7225951 21855093751 164481310134301 2675558106868421881
1 63 45199 182199871 2801736968751 128645361626874561 14895038886845467640193
- Alois P. Heinz, Antidiagonals n = 1..45 (first 20 antidiagonals from R. H. Hardin)
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250. MR0469773 (57 #9554); see Eqs. (6) on p. 248 and (8) on p. 249 with t=0.
- Yifei Li and Sheila Sundaram, Homology of Segre products of Boolean and subspace lattices, arXiv:2408.08421 [math.CO], 2024. See p. 17.
- Wikipedia, Partition (number theory).
- Wikipedia, Multinomial theorem.
-
A212855_row := proc(m,len) proc(n,m) sum(z^k/k!^m, k = 0..infinity);
series(%^x, z=0, n+1): n!^m*coeff(%,z,n); [seq(coeff(%,x,k),k=0..n)] end;
seq(add(abs(k), k=%(j,m)), j=1..len) end:
for n from 1 to 6 do A212855_row(n,7) od; # Peter Luschny, May 26 2017
# second Maple program:
T:= proc(n, k) option remember; `if`(k=0, 1, -add(
binomial(k, j)^n*(-1)^j*T(n, k-j), j=1..k))
end:
seq(seq(T(n, 1+d-n), n=1..d), d=1..10); # Alois P. Heinz, Apr 26 2020
-
rows = 9;
row[m_, len_] := Module[{p, s0, s1, s2}, p = Function[{n, m0}, s0 = Sum[ z^k/k!^m0, {k, 0, n}]; s1 = Series[s0^x, {z, 0, n+1}] // Normal; s2 = n!^m0*Coefficient[s1, z, n]; Table[Coefficient[s2, x, k], {k, 0, n}]]; Table[Sum[Abs[k], {k, p[j, m]}], {j, 1, len}]];
T = Table[row[n, rows+1], {n, 1, rows}];
Table[T[[n-k+1, k]], {n, 1, rows}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Feb 27 2018, after Peter Luschny *)
A212852
Number of n X 5 arrays with rows being permutations of 0..4 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 3651, 966751, 158408751, 21855093751, 2801736968751, 347190069843751, 42328368099218751, 5119530150996093751, 616756797369980468751, 74155772004699902343751, 8907394925520999511718751
Offset: 1
Some solutions for n=3
..0..3..1..2..4....0..2..4..1..3....0..1..4..3..2....0..2..3..4..1
..1..0..4..3..2....1..0..3..2..4....1..3..0..4..2....0..4..3..1..2
..2..4..1..3..0....1..2..0..4..3....3..1..4..0..2....4..0..1..3..2
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6), p. 248 (with t=0).
- Wikipedia, Multinomial coefficients.
- Wikipedia, Partition (number theory).
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[n, 5];
Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A212853
Number of n X 6 arrays with rows being permutations of 0..5 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 90921, 179781181, 191740223841, 164481310134301, 128645361626874561, 96426023622482278621, 70816637331790329140481, 51492108377805402906874141, 37256471170472317193421713601, 26890352949868734582700237312861
Offset: 1
Some solutions for n=3:
0 3 1 4 2 5 0 3 1 4 2 5 0 3 1 4 2 5 0 3 1 4 2 5
3 0 2 4 5 1 1 3 0 4 5 2 4 0 3 1 2 5 0 1 5 2 3 4
1 2 4 0 3 5 5 0 4 2 3 1 2 1 5 4 3 0 3 1 5 0 4 2
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6) (with t=0), p. 248, and the comments above.
- Wikipedia, Partition (number theory).
- Wikipedia, Multinomial theorem.
Cf.
A000041,
A070289,
A212850,
A212851,
A212852,
A212854,
A212855,
A212856,
A212857,
A309951,
A325305.
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[n, 6];
Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A212854
Number of n X 7 arrays with rows being permutations of 0..6 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 3081513, 53090086057, 429966316953825, 2675558106868421881, 14895038886845467640193, 78785944892341703819175577, 406643086764765052892275303425, 2073826171428339544452057104498041
Offset: 1
Some solutions for n=3
..0..3..4..1..5..2..6....0..3..4..1..5..2..6....0..3..4..1..5..2..6
..1..0..3..5..2..6..4....1..0..3..2..4..5..6....1..0..4..2..5..6..3
..5..2..1..0..6..3..4....4..6..5..1..0..3..2....2..4..0..6..3..5..1
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6) (with t=0), p. 248, and the comments above.
- Wikipedia, Partition (number theory).
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[n, 7];
Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A309951
Irregular triangular array, read by rows: T(n,k) is the sum of the products of multinomial coefficients (n_1 + n_2 + n_3 + ...)!/(n_1! * n_2! * n_3! * ...) taken k at a time, where (n_1, n_2, n_3, ...) runs over all integer partitions of n (n >= 0, 0 <= k <= A000041(n)).
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 2, 1, 10, 27, 18, 1, 47, 718, 4416, 10656, 6912, 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000, 1, 1602, 929171, 260888070, 39883405500, 3492052425000, 177328940580000, 5153150631600000, 82577533320000000, 669410956800000000, 2224399449600000000, 1632586752000000000, 1, 11481
Offset: 0
Triangle begins as follows:
[n=0]: 1, 1;
[n=1]: 1, 1;
[n=2]: 1, 3, 2;
[n=3]: 1, 10, 27, 18;
[n=4]: 1, 47, 718, 4416, 10656, 6912;
[n=5]: 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000;
...
For example, when n = 3, the integer partitions of 3 are 3, 1+2, 1+1+1, and the corresponding multinomial coefficients are 3!/3! = 1, 3!/(1!2!) = 3, and 3!/(1!1!1!) = 6. Then T(n=3, k=0) = 1, T(n=3, k=1) = 1 + 3 + 6 = 10, T(n=3, k=2) = 1*3 + 1*6 + 3*6 = 27, and T(n=3, k=3) = 1*3*6 = 18.
Since |P_3| = A000041(3) = 3, the recurrence of _R. H. Hardin_ for column n = 3 of array A212855 is T(3,0)*R(m,3) - T(3,1)*R(m-1,3) + T(3,2)*R(m-2,3) - T(3,3)*R(m-3,3) = 0; i.e., R(m,3) - 10*R(m-1,3) + 27*R(m-2,3) - 18*R(m-3,3) = 0 for m >= 4. We have the initial conditions R(m=1,3) = 1, R(m=2,3) = 19, and R(m=3,3) = 163. Thus, R(m,3) = 6^m - 2*3^m + 1 = A212850(m) for m >= 1. See the documentation of array A212855.
- Alois P. Heinz, Rows n = 0..14, flattened
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6), p. 248, and the comments above.
- Wikipedia, Partition (number theory).
Cf.
A000012 (column k=0),
A000041,
A005651 (column k=1),
A070289,
A212850,
A212851,
A212852,
A212853,
A212854,
A212855,
A212856,
A212857,
A212858,
A212859,
A212860.
Rightmost terms in rows give
A309972.
-
g:= proc(n, i) option remember; `if`(n=0 or i=1, [n!], [map(x->
binomial(n, i)*x, g(n-i, min(n-i, i)))[], g(n, i-1)[]])
end:
b:= proc(n, m) option remember; `if`(n=0, 1,
expand(b(n-1, m)*(g(m$2)[n]*x+1)))
end:
T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(nops(g(n$2)), n)):
seq(T(n), n=0..7); # Alois P. Heinz, Aug 25 2019
-
g[n_, i_] := g[n, i] = If[n==0 || i==1, {n!}, Join[Binomial[n, i]*#& /@ g[n - i, Min[n - i, i]], g[n, i - 1]]];
b[n_, m_] := b[n, m] = If[n==0, 1, Expand[b[n-1, m]*(g[m, m][[n]]*x+1)]];
T[n_] := CoefficientList[b[Length[g[n, n]], n], x];
T /@ Range[0, 7] // Flatten (* Jean-François Alcover, Feb 18 2021, after Alois P. Heinz *)
A212806
Number of n X n matrices in which each row is a permutation of [1..n] and which contain no column rises.
Original entry on oeis.org
1, 3, 163, 271375, 21855093751, 128645361626874561, 78785944892341703819175577, 6795588328283070704898044776213094655, 107414633522643325764587104395687638119674465944431, 392471529081605251407320880492124164530148025908765037878553312273, 407934916447631403509359040563002566177814886353044858592046202746464825839911293037
Offset: 1
For n=2 the three matrices are [12/21], [21/12], [21/21] (but not [12/12]).
From _Petros Hadjicostas_, Aug 26 2019: (Start)
For example, when n = 3, the integer partitions of 3 are 3, 1+2, and 1+1+1, with corresponding (b_1, b_2, b_3) notation (0,0,1), (1,1,0), and (3,0,0). The corresponding multinomial coefficients are 3!/3! = 1, 3!/(1!*2!) = 3, and 3!/(1!*1!*1!) = 6, while the corresponding quantities (b_1 + b_2 + b_3)!/(b_1!*b_2!*b_3!) are 1, 2, and 1. The corresponding exponents of -1 (i.e., n - Sum_{j=1..n} b_j) are 3 - (0+0+1) = 2, 3 - (1+1+0) = 1, and 3 - (3+0+0) = 0.
It follows that a(n) = (-1)^2 * 1 * 1^3 + (-1)^1 * 2 * 3^3 + (-1)^0 * 1 * 6^3 = 163.
(End)
- Alois P. Heinz, Table of n, a(n) for n = 1..30 (first 18 terms from R. H. Hardin)
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250. MR0469773 (57 #9554). [Their a(5) on p. 250 is wrong; see A212845.]
- Wikipedia, Partition (number theory).
Cf.
A000041,
A070289,
A212850,
A212851,
A212852,
A212853,
A212854,
A212856,
A212857,
A212858,
A212859,
A212860,
A309951,
A325305.
-
A212806 := proc(n) sum(z^k/k!^n, k=0..infinity);
series(%^x, z=0, n+1): n!^n*coeff(%,z,n); add(abs(coeff(%,x,k)),k=0..n) end:
seq(A212806(n), n=1..11); # Peter Luschny, May 27 2017
-
a[n_] := Module[{s0, s1, s2}, s0 = Sum[z^k/k!^n, {k, 0, n}]; s1 = Series[s0^x, {z, 0, n + 1}] // Normal; s2 = n!^n*Coefficient[s1, z, n]; Sum[Abs[Coefficient[s2, x, k]], {k, 0, n}]]; Array[a, 11] (* Jean-François Alcover, Feb 27 2018, after Peter Luschny *)
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k-j], {j, 1, k}]];
a[n_] := T[n, n];
Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A376661
Frequency of the most common number among the multinomial coefficients n!/(x_1! * ... * x_k!) for all partitions (x_1, ..., x_k) of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 6, 6, 7, 8, 9, 11, 11, 13, 13, 14, 15, 16, 18, 19, 20, 23, 24, 26, 27, 30, 33, 37, 40, 43, 49, 52, 57, 64, 68, 76, 79, 87, 93, 99, 109, 116, 125, 135, 143, 157, 171, 191, 206, 223, 238, 254, 276, 291
Offset: 0
For n = 7, the only number that appears more than once in row 7 of A036038 is 210, which appears twice: 210 = 7!/(2!*2!*3!) = 7!/(1!*1!*1!*4!). Hence, a(7) = 2.
A210237
Triangle of distinct values M(n) of multinomial coefficients for partitions of n in increasing order of n and M(n).
Original entry on oeis.org
1, 1, 2, 1, 3, 6, 1, 4, 6, 12, 24, 1, 5, 10, 20, 30, 60, 120, 1, 6, 15, 20, 30, 60, 90, 120, 180, 360, 720, 1, 7, 21, 35, 42, 105, 140, 210, 420, 630, 840, 1260, 2520, 5040, 1, 8, 28, 56, 70, 168, 280, 336, 420, 560, 840, 1120, 1680, 2520, 3360, 5040, 6720
Offset: 1
Trianglebegins:
1;
1, 2;
1, 3, 6;
1, 4, 6, 12, 24;
1, 5, 10, 20, 30, 60, 120;
1, 6, 15, 20, 30, 60, 90, 120, 180, 360, 720;
1, 7, 21, 35, 42, 105, 140, 210, 420, 630, 840, 1260, 2520, 5040;
...
Thus for n=4 (fourth row) the distinct values of multinomial coefficients are:
4!/(4!) = 1
4!/(3!1!) = 4
4!/(2!2!) = 6
4!/(2!1!1!) = 12
4!/(1!1!1!1!) = 24
-
b:= proc(n, i) option remember; `if`(n=0 or i<2, {1},
{seq(map(x-> x*i!^j, b(n-i*j, i-1))[], j=0..n/i)})
end:
T:= n-> sort([map(x-> n!/x, b(n, n))[]])[]:
seq(T(n), n=1..10); # Alois P. Heinz, Aug 13 2012
-
b[n_, i_] := b[n, i] = If[n==0 || i<2, {1}, Union[Flatten @ Table[(#*i!^j&) /@ b[n-i*j, i-1], {j, 0, n/i}]]]; T[n_] := Sort[Flatten[n!/#& /@ b[n, n]] ]; Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Feb 05 2017, after Alois P. Heinz *)
A215520
Number T(n,k) of distinct values of multinomial coefficients M(n;lambda), where lambda ranges over all partitions of n with largest part <= k; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 3, 5, 6, 7, 1, 4, 7, 9, 10, 11, 1, 4, 8, 10, 12, 13, 14, 1, 5, 10, 14, 17, 18, 19, 20, 1, 5, 12, 16, 21, 23, 25, 26, 27, 1, 6, 14, 20, 27, 29, 32, 34, 35, 36, 1, 6, 16, 22, 32, 35, 40, 43, 45, 46, 47, 1, 7, 19, 28, 40, 45, 52, 57, 60, 62, 63, 64
Offset: 1
T(3,2) = 2 = |{3!/(2!*1!), 3!/(1!*1!*1!)}| = |{3, 6}|.
T(5,2) = 3 = |{30, 60, 120}|.
T(7,4) = 10 = |{35, 105, 140, 210, 420, 630, 840, 1260, 2520, 5040}|.
T(8,3) = 10 = |{560, 1120, 1680, 2520, 3360, 5040, 6720, 10080, 20160, 40320}|.
T(9,2) = 5 = |{22680, 45360, 90720, 181440, 362880}|.
Triangle T(n,k) begins:
1;
1, 2;
1, 2, 3;
1, 3, 4, 5;
1, 3, 5, 6, 7;
1, 4, 7, 9, 10, 11;
1, 4, 8, 10, 12, 13, 14;
1, 5, 10, 14, 17, 18, 19, 20;
1, 5, 12, 16, 21, 23, 25, 26, 27;
1, 6, 14, 20, 27, 29, 32, 34, 35, 36;
-
b:= proc(n, i) option remember; `if`(n=0, {1}, `if`(i<1, {},
{b(n, i-1)[], seq(map(x-> x*i!^j, b(n-i*j, i-1))[], j=1..n/i)}))
end:
T:= (n, k)-> nops(b(n, k)):
seq(seq(T(n, k), k=1..n), n=1..14);
-
b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i < 1, {}, Join[b[n, i - 1], Table[ b[n - i*j, i - 1] *i!^j, {j, 1, n/i}] // Flatten]] // Union]; T[n_, k_] := Length[b[n, k]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jan 21 2015, after Alois P. Heinz *)
Showing 1-10 of 19 results.
Comments