A005651
Sum of multinomial coefficients (n_1+n_2+...)!/(n_1!*n_2!*...) where (n_1, n_2, ...) runs over all integer partitions of n.
Original entry on oeis.org
1, 1, 3, 10, 47, 246, 1602, 11481, 95503, 871030, 8879558, 98329551, 1191578522, 15543026747, 218668538441, 3285749117475, 52700813279423, 896697825211142, 16160442591627990, 307183340680888755, 6147451460222703502, 129125045333789172825, 2841626597871149750951
Offset: 0
For n=3, say the first three cans in the row contain red, white, and blue paint respectively. The objects can be painted r,r,r or r,r,w or r,w,b and then linearly ordered in 1 + 3 + 6 = 10 ways. - _Geoffrey Critzer_, Jun 08 2009
From _Gus Wiseman_, Sep 03 2018: (Start)
The a(3) = 10 ordered set partitions with weakly decreasing block sizes:
{{1},{2},{3}}
{{1},{3},{2}}
{{2},{1},{3}}
{{2},{3},{1}}
{{3},{1},{2}}
{{3},{2},{1}}
{{2,3},{1}}
{{1,2},{3}}
{{1,3},{2}}
{{1,2,3}}
(End)
- Abramowitz and Stegun, Handbook, p. 831, column labeled "M_1".
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 126.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..450 (first 101 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. E. Hoffman, Updown categories: Generating functions and universal covers, arXiv preprint arXiv:1207.1705 [math.CO], 2012.
- A. Knopfmacher, A. M. Odlyzko, B. Pittel, L. B. Richmond, D. Stark, G. Szekeres, and N. C. Wormald, The Asymptotic Number of Set Partitions with Unequal Block Sizes, The Electronic Journal of Combinatorics, 6 (1999), R2.
- S. Schreiber & N. J. A. Sloane, Correspondence, 1980.
Cf.
A000041,
A000110,
A000258,
A000670,
A007837,
A008277,
A008480,
A036038,
A140585,
A178682,
A212855,
A247551,
A300335,
A318762.
-
A005651b := proc(k) add( d/(d!)^(k/d),d=numtheory[divisors](k)) ; end proc:
A005651 := proc(n) option remember; local k ; if n <= 1 then 1; else (n-1)!*add(A005651b(k)*procname(n-k)/(n-k)!, k=1..n) ; end if; end proc:
seq(A005651(k), k=0..10) ; # R. J. Mathar, Jan 03 2011
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0 or i=1, n!,
b(n, i-1) +binomial(n, i)*b(n-i, min(n-i, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 29 2015, Dec 12 2016
-
Table[Total[n!/Map[Function[n, Apply[Times, n! ]], IntegerPartitions[n]]], {n, 0, 20}] (* Geoffrey Critzer, Jun 08 2009 *)
Table[Total[Apply[Multinomial, IntegerPartitions[n], {1}]], {n, 0, 20}] (* Jean-François Alcover and Olivier Gérard, Sep 11 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[t==1, 1/n!, Sum[b[n-j, j, t-1]/j!, {j, i, n/t}]]; a[n_] := If[n==0, 1, n!*b[n, 0, n]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 20 2015, after Alois P. Heinz *)
-
a(m,n):=if n=m then 1 else sum(binomial(n,k)*a(k,n-k),k,m,(n/2))+1;
makelist(a(1,n),n,0,17); /* Vladimir Kruchinin, Sep 06 2014 */
-
a(n)=my(N=n!,s);forpart(x=n,s+=N/prod(i=1,#x,x[i]!));s \\ Charles R Greathouse IV, May 01 2015
-
{ my(n=25); Vec(serlaplace(prod(k=1, n, 1/(1-x^k/k!) + O(x*x^n)))) } \\ Andrew Howroyd, Dec 20 2017
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003
A000275
Coefficients of a Bessel function (reciprocal of J_0(z)); also pairs of permutations with rise/rise forbidden.
Original entry on oeis.org
1, 1, 3, 19, 211, 3651, 90921, 3081513, 136407699, 7642177651, 528579161353, 44237263696473, 4405990782649369, 515018848029036937, 69818743428262376523, 10865441556038181291819, 1923889742567310611949459, 384565973956329859109177427, 86180438505835750284241676121
Offset: 0
From _Peter Bala_, Aug 08 2011: (Start)
a(3) = 19: The 19 pairs of permutations in the group S_3 x S_3 with no common rises correspond to the zero entries in the table below.
======================================
Number of common rises in S_3 x S_3
======================================
| 123 132 213 231 312 321
======================================
123| 2 1 1 1 1 0
132| 1 1 0 1 0 0
213| 1 0 1 0 1 0
231| 1 1 0 1 0 0
312| 1 0 1 0 1 0
321| 0 0 0 0 0 0
(End)
G.f. = 1 + x + 3*x^2 + 19*x^3 + 211*x^4 + 3651*x^5 + 90921*x^6 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..261
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (8) (with t=0 and m=2) on p. 249.
- Leonid Bedratyuk and Nataliia Luno, Connection problems for the generalized hypergeometric Appell polynomials, Carpathian Math. Publ. (2020) Vol. 12, No. 1, 10-18.
- L. Carlitz, The coefficients of the reciprocal of J_0(x), Archiv. Math. 6 (1955), 121-127.
- L. Carlitz, Richard Scoville, and Theresa Vaughan, Enumeration of pairs of permutations and sequences, Bull. Amer. Math. Soc. 80(5) (1974), 881-884.
- L. Carlitz, Richard Scoville, and Theresa Vaughan, Enumeration of pairs of permutations and sequences, Bull. Amer. Math. Soc. 80(5) (1974), 881-884. [Annotated scanned copy]
- L. Carlitz, N. J. A. Sloane, and C. L. Mallows, Correspondence, 1975.
- Jan Geuenich, Tilting modules for the Auslander algebra of K[x]/(xn), arXiv:1803.10707 [math.RT], 2018.
- Gunnar Thor Magnússon, The inner product on exterior powers of a complex vector space, arXiv preprint arXiv:1401.4048 [math.AG], 2014.
- R. McIntosh, A generalization of a congruential property of Lucas, Amer. Math. Monthly 99(3) (1992), 231-238; see page 232. MR1216210 (95b:11008)
- J. Riordan, Inverse relations and combinatorial identities, Amer. Math. Monthly, 71 (1964), 485-498.
- Jonathan D. H. Smith, Commutative Moufang loops and Bessel functions, Invent. Math. 67(1) (1982), 173-187.
- Index entries for sequences related to Bessel functions or polynomials
-
A000275 := proc(n) sum(z^k/k!^2, k = 0..infinity);
series(%^x, z=0, n+1): n!^2*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
seq(A000275(n), n=0..17); # Peter Luschny, May 27 2017
-
a[0] = 1; a[n_] := a[n] = Sum[(-1)^(r+n+1)*Binomial[n, r]^2 a[r], {r, 0, n-1}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 05 2013 *)
CoefficientList[Series[1/BesselJ[0,Sqrt[4*x]], {x, 0, 20}], x]* Range[0, 20]!^2 (* Vaclav Kotesovec, Mar 02 2014 *)
a[ n_] := If[ n < 0, 0, (n! 2^n)^2 SeriesCoefficient[ 1 / BesselJ[ 0, x], {x, 0, 2 n}]]; (* Michael Somos, Aug 20 2015 *)
-
{a(n) = if( n<0, 0, n!^2 * 4^n * polcoeff( 1 / besselj(0, x + x * O(x^(2*n))), 2*n))}; /* Michael Somos, May 17 2004 */
A070289
Number of distinct values of multinomial coefficients ( n / (p1, p2, p3, ...) ) where (p1, p2, p3, ...) runs over all partitions of n.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 14, 20, 27, 36, 47, 64, 79, 102, 125, 157, 193, 243, 296, 366, 441, 538, 639, 773, 911, 1092, 1294, 1532, 1799, 2131, 2475, 2901, 3369, 3935, 4554, 5292, 6084, 7033, 8087, 9292, 10617, 12198, 13880, 15874, 18039, 20541, 23263, 26414, 29838
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..92
- George E. Andrews, Arnold Knopfmacher, and Burkhard Zimmermann, On the number of distinct multinomial coefficients, Journal of Number Theory 118 (2006), 15-30; arXiv preprint, arXiv:math/0509470 [math.CO], 2005.
- Sergei Viznyuk, C-Program, C-Program, local copy.
-
b:= proc(n,i) option remember;
if n=0 then {1} elif i<1 then {} else {b(n, i-1)[],
seq(map(x-> x*i!^j, b(n-i*j, i-1))[], j=1..n/i)} fi
end:
a:= n-> nops(b(n, n)):
seq(a(n), n=0..50); # Alois P. Heinz, Aug 14 2012
-
b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i<1, {}, Union[Join[b[n, i-1], Flatten[ Table[Function[{x}, x*i!^j] /@ b[n-i*j, i-1], {j, 1, n/i}]]]]]]; a[n_] := Length[b[n, n]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 23 2015, after Alois P. Heinz *)
-
def A070289(n):
P = Partitions(n)
M = set(multinomial(list(x)) for x in P)
return len(M)
[A070289(n) for n in range(20)]
# Joerg Arndt, Aug 14 2012
A212856
Number of 3 X n arrays with rows being permutations of 0..n-1 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 1, 7, 163, 8983, 966751, 179781181, 53090086057, 23402291822743, 14687940716402023, 12645496977257273257, 14490686095184389113277, 21557960797148733086439949, 40776761007750226749220637461, 96332276574683758035941025907591
Offset: 0
Some solutions for n=3:
2 1 0 2 0 1 1 2 0 0 2 1 2 0 1 2 1 0 2 1 0
0 2 1 2 0 1 0 2 1 2 1 0 2 1 0 2 1 0 2 0 1
0 2 1 2 1 0 2 0 1 2 0 1 0 1 2 1 2 0 2 0 1
-
A212856 := proc(n) sum(z^k/k!^3, k = 0..infinity);
series(%^x, z=0, n+1): n!^3*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
seq(A212856(n), n=0..14); # Peter Luschny, May 27 2017
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, -add(
binomial(n, j)^3*(-1)^j*a(n-j), j=1..n))
end:
seq(a(n), n=0..15); # Alois P. Heinz, Apr 26 2020
-
f[0] = 1; f[n_] := f[n] = Sum[(-1)^(n+k+1)*f[k]*Binomial[n, k]^2/(n-k)!, {k, 0, n-1}]; a[n_] := f[n]*n!; Array[a, 14] (* Jean-François Alcover, Feb 27 2018, after Daniel Suteu *)
A212850
Number of n X 3 arrays with rows being permutations of 0..2 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 19, 163, 1135, 7291, 45199, 275563, 1666495, 10038331, 60348079, 362442763, 2175719455, 13057505371, 78354598159, 470156286763, 2821023814015, 16926401164411, 101559181827439, 609357415487563, 3656151466494175
Offset: 1
Some solutions for n=3:
1 2 0 2 1 0 0 2 1 1 2 0 1 2 0 2 1 0 1 2 0
2 0 1 2 0 1 2 0 1 2 0 1 0 2 1 2 0 1 1 0 2
0 2 1 0 1 2 2 1 0 2 1 0 2 0 1 0 2 1 0 2 1
A212851
Number of n X 4 arrays with rows being permutations of 0..3 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 211, 8983, 271375, 7225951, 182199871, 4479288703, 108787179775, 2626338801151, 63217691436031, 1519452489242623, 36493601345048575, 876167372044132351, 21031868446675976191, 504811062363654815743, 12116020140998121291775, 290791139166323355287551
Offset: 1
Some solutions for n=3:
..1..3..0..2....3..1..2..0....1..2..0..3....1..2..0..3....1..2..0..3
..2..1..0..3....3..1..0..2....0..1..3..2....3..0..2..1....2..1..3..0
..2..3..1..0....1..2..0..3....3..2..0..1....1..2..0..3....1..3..2..0
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k-j], {j, 1, k}]];
a[n_] := T[n, 4];
Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A212852
Number of n X 5 arrays with rows being permutations of 0..4 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 3651, 966751, 158408751, 21855093751, 2801736968751, 347190069843751, 42328368099218751, 5119530150996093751, 616756797369980468751, 74155772004699902343751, 8907394925520999511718751
Offset: 1
Some solutions for n=3
..0..3..1..2..4....0..2..4..1..3....0..1..4..3..2....0..2..3..4..1
..1..0..4..3..2....1..0..3..2..4....1..3..0..4..2....0..4..3..1..2
..2..4..1..3..0....1..2..0..4..3....3..1..4..0..2....4..0..1..3..2
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6), p. 248 (with t=0).
- Wikipedia, Multinomial coefficients.
- Wikipedia, Partition (number theory).
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[n, 5];
Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A212853
Number of n X 6 arrays with rows being permutations of 0..5 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 90921, 179781181, 191740223841, 164481310134301, 128645361626874561, 96426023622482278621, 70816637331790329140481, 51492108377805402906874141, 37256471170472317193421713601, 26890352949868734582700237312861
Offset: 1
Some solutions for n=3:
0 3 1 4 2 5 0 3 1 4 2 5 0 3 1 4 2 5 0 3 1 4 2 5
3 0 2 4 5 1 1 3 0 4 5 2 4 0 3 1 2 5 0 1 5 2 3 4
1 2 4 0 3 5 5 0 4 2 3 1 2 1 5 4 3 0 3 1 5 0 4 2
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6) (with t=0), p. 248, and the comments above.
- Wikipedia, Partition (number theory).
- Wikipedia, Multinomial theorem.
Cf.
A000041,
A070289,
A212850,
A212851,
A212852,
A212854,
A212855,
A212856,
A212857,
A309951,
A325305.
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[n, 6];
Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A212854
Number of n X 7 arrays with rows being permutations of 0..6 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 3081513, 53090086057, 429966316953825, 2675558106868421881, 14895038886845467640193, 78785944892341703819175577, 406643086764765052892275303425, 2073826171428339544452057104498041
Offset: 1
Some solutions for n=3
..0..3..4..1..5..2..6....0..3..4..1..5..2..6....0..3..4..1..5..2..6
..1..0..3..5..2..6..4....1..0..3..2..4..5..6....1..0..4..2..5..6..3
..5..2..1..0..6..3..4....4..6..5..1..0..3..2....2..4..0..6..3..5..1
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6) (with t=0), p. 248, and the comments above.
- Wikipedia, Partition (number theory).
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[n, 7];
Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A309951
Irregular triangular array, read by rows: T(n,k) is the sum of the products of multinomial coefficients (n_1 + n_2 + n_3 + ...)!/(n_1! * n_2! * n_3! * ...) taken k at a time, where (n_1, n_2, n_3, ...) runs over all integer partitions of n (n >= 0, 0 <= k <= A000041(n)).
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 2, 1, 10, 27, 18, 1, 47, 718, 4416, 10656, 6912, 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000, 1, 1602, 929171, 260888070, 39883405500, 3492052425000, 177328940580000, 5153150631600000, 82577533320000000, 669410956800000000, 2224399449600000000, 1632586752000000000, 1, 11481
Offset: 0
Triangle begins as follows:
[n=0]: 1, 1;
[n=1]: 1, 1;
[n=2]: 1, 3, 2;
[n=3]: 1, 10, 27, 18;
[n=4]: 1, 47, 718, 4416, 10656, 6912;
[n=5]: 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000;
...
For example, when n = 3, the integer partitions of 3 are 3, 1+2, 1+1+1, and the corresponding multinomial coefficients are 3!/3! = 1, 3!/(1!2!) = 3, and 3!/(1!1!1!) = 6. Then T(n=3, k=0) = 1, T(n=3, k=1) = 1 + 3 + 6 = 10, T(n=3, k=2) = 1*3 + 1*6 + 3*6 = 27, and T(n=3, k=3) = 1*3*6 = 18.
Since |P_3| = A000041(3) = 3, the recurrence of _R. H. Hardin_ for column n = 3 of array A212855 is T(3,0)*R(m,3) - T(3,1)*R(m-1,3) + T(3,2)*R(m-2,3) - T(3,3)*R(m-3,3) = 0; i.e., R(m,3) - 10*R(m-1,3) + 27*R(m-2,3) - 18*R(m-3,3) = 0 for m >= 4. We have the initial conditions R(m=1,3) = 1, R(m=2,3) = 19, and R(m=3,3) = 163. Thus, R(m,3) = 6^m - 2*3^m + 1 = A212850(m) for m >= 1. See the documentation of array A212855.
- Alois P. Heinz, Rows n = 0..14, flattened
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6), p. 248, and the comments above.
- Wikipedia, Partition (number theory).
Cf.
A000012 (column k=0),
A000041,
A005651 (column k=1),
A070289,
A212850,
A212851,
A212852,
A212853,
A212854,
A212855,
A212856,
A212857,
A212858,
A212859,
A212860.
Rightmost terms in rows give
A309972.
-
g:= proc(n, i) option remember; `if`(n=0 or i=1, [n!], [map(x->
binomial(n, i)*x, g(n-i, min(n-i, i)))[], g(n, i-1)[]])
end:
b:= proc(n, m) option remember; `if`(n=0, 1,
expand(b(n-1, m)*(g(m$2)[n]*x+1)))
end:
T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(nops(g(n$2)), n)):
seq(T(n), n=0..7); # Alois P. Heinz, Aug 25 2019
-
g[n_, i_] := g[n, i] = If[n==0 || i==1, {n!}, Join[Binomial[n, i]*#& /@ g[n - i, Min[n - i, i]], g[n, i - 1]]];
b[n_, m_] := b[n, m] = If[n==0, 1, Expand[b[n-1, m]*(g[m, m][[n]]*x+1)]];
T[n_] := CoefficientList[b[Length[g[n, n]], n], x];
T /@ Range[0, 7] // Flatten (* Jean-François Alcover, Feb 18 2021, after Alois P. Heinz *)
Showing 1-10 of 19 results.
Comments